
Lecture 7:

Plucked Strings and the Wave Equation

Here we want to look in more detail at how the string on a guitar (or

violin) vibrates when plucked. Specifically, we’ll look at how different points

along the string move transverse to the length of the string. Our goal will

be to explain the harmonics of the note produced by the string—i.e., why

their frequencies are all integer multiples of the lowest frequency heard (the

fundamental).

Let x be a horizontal coordinate measuring position along a string of

length ` when it’s at rest, and let y(x, t) be the transverse displacement of

the string at position x and time t. Say that the string has tension T along

it (see Figure 1). In guitar and violin strings, this tension is produced by

fixing one end of the string at the bottom of the instrument, threading the

other end of the string through a tuning peg at the top of the instrument,

and tightening the peg.

We want to find a differential equation satisfied by y(x, t), using Newton’s

law F = ma. We focus on a short segment of the string, between position

x and x + ∆x. Let F be the vertical force on the piece. At the ends,

the tension force T is directed along the string, whose slope is ∂y/∂x (see

Benson Figure 3.2). If we let θ be the angle of elevation of the tangent

to the string (so that tan θ = ∂y/∂x), then the vertical component of the

tension at any point is T sin θ (see Figure 2). Thus, the net force on this

segment of the string is

F = T sin θ(x + ∆x))− T sin θ(x).

(For the moment, we’re suppressing dependence on t.)

Small Displacement Approximation. When the displacement y is small,

the angle θ is small as well, so that cos θ ≈ 1 and sin θ ≈ tan θ. So our
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approximate sum of forces is

F = T

(
∂y

∂x
(x + ∆x)− ∂y

∂x
(x)

)
.

Suppose the string has linear density ρ (i.e., its mass is ρ grams per mil-

limetre). Then the mass of this piece of string is m = ρ∆x, the vertical

acceleration is a = ∂2y/∂t2, so F = ma gives

T

(
∂y

∂x
(x + ∆x)− ∂y

∂x
(x)

)
= ρ∆x

∂2y

∂t2
(x).

Dividing by ∆x and letting ∆x→ 0 gives us

T
∂2y

∂x2
= ρ

∂2y

∂t2
.

We recognize this as a form of the wave equation, with constants T and ρ

thrown in. Usually these constants are lumped together into one constant,

by letting c =
√
T/ρ, whereupon our equation becomes

∂2y

∂t2
= c2

∂2y

∂x2
.

We will see in moment that c is the speed with which waves travel along

the string.

For most PDE, there is no way of writing down a general solution; in

fact, you’re extremely lucky if you can find one non-trivial explicit solution.

However, in the 18th century Jean d’Alembert figured out how to write

down all the solutions of the wave equation. This result comes from writing

the equation in the following way,((
∂

∂t

)2

− c2
(
∂

∂x

)2
)
y = 0,

and factoring the operator on the left-hand side as a composition:(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c ∂

∂x

)
y = 0.
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(Note that the middle terms in the product cancel out.) The idea is that

if we had a function y(x, t) such that

(
∂

∂t
− c ∂

∂x

)
y = 0, then it would

solve the wave equation. Examples of such functions are

y = x + ct, or more generally y = f (x + ct).

What do these solutions look like? By comparing the graphs at time zero

and at a later time (see Figure 3), we see that the graph just travels to the

left by c units per unit time. In other words, such solutions are ‘waves’ that

travel to the left (while maintaining their shape) with speed c.

We can also factor the wave equation as(
∂

∂t
− c ∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
y = 0,

and this shows that solutions of

(
∂

∂t
+ c

∂

∂x

)
y = 0 are also solutions

of the wave equation. Such functions take the form y = g(x − ct), and

are rightward travelling waves. Because the wave equation is linear and

homogeneous, we can add these two kinds of solutions together, giving the

d’Alembert solution

y(x, t) = f (x + ct) + g(x− ct).

This is the general solution of the wave equation; in other words, all solutions

can be written as a sum of a leftward travelling wave and a rightward

travelling wave.

Now, the wave on our string can’t travel forever, because the ends of the

string are fixed:

y(0, t) = 0 = y(`, t) for all t.

These are the boundary conditions that we want the solutions of our PDE

to satisfy.
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Substituting the d’Alembert solution into the boundary condition at x = 0

gives

0 = f (ct) + g(−ct) for all t,

hence g(u) = −f (u) for any real number u. We can then write

(1) y(x, t) = f (x + ct)− f (−x + ct).

(Note that this implies that, for any t, y and ∂y/∂t are odd functions of x.)

Imposing the boundary condition at x = ` gives 0 = f (`+ct)−f (−`+ct),

which in turn implies that

(2) f (u + `) = f (u− `)

for any real number u. This is equivalent to f being periodic with period 2`,

since f (u+ 2`) = f (u+ `+ `) and then using (2) shows that f (u+ 2`) =

f (u + `− `) = f (u).

Our study of Fourier series shows that (most) functions of period 2` can

be represented as a sum

f (x) =

∞∑
n=1

cn cos
(
n
πx

`
+ φk

)
.

(Note that we’ve left off the constant term in the Fourier series, since any

constant added to f would cancel out in the formula (1) for y(x, t).) Each

of the terms in this series gives rise to a separate solution to the wave

equation, satisfying the boundary conditions. Plugging the nth term into

(1) gives

y = cn

[
cos

(
n
π(x + ct)

`
+ φk

)
− cos

(
n
π(−x + ct)

`
+ φk

)]
.
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Using cos(A + B) − cos(A − B) = −2 sinA sinB, with A =
nπct

`
+ φ

and B =
nπx

`
, we get

y = −2cn sin

(
nπct

`
+ φ

)
sin
(nπx

`

)
.

This tells us that the string has modes of vibration that look like a sine

function with n arches along the length of the string (in the x direction), and

which oscillate in time with frequency (nπc/`)/(2π) = nc/(2`). In other

words, the nth mode has time frequency exactly n times the frequency of

the lowest mode. This is the observation of the ancient Greeks (attributed

to Pythagoras) that we first mentioned in Lecture 3.

Initial Conditions. The actual form of the function f in the solution (1)

will be determined by the initial displacement and velocity of the string:

s0(x) = y(x, 0) = f (x)− f (−x),(3)

v0(x) =
∂y

∂t
(x, 0) = c(f ′(x)− f ′(−x)).(4)

Using these formulas we can solve for f (and hence y(x, t)) by integration.

Namely, integrating (4) gives

1
c

∫ x

0

v0(u) du =

∫ x

0

f ′(u)− f ′(−u) du

= f (x) + f (−x) + A

where A is some constant. (Note that Benson incorrectly leaves this con-

stant out.) Adding this with (3) and solving for f (x) gives

f (x) = 1
2

(
s0(x) + 1

c

∫ x

0

v0(u) du− A
)
.
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Then substituting this in (1) gives

y(x, t) = 1
2 (s0(x + ct)− s0(−x + ct))

+ 1
2c

(∫ x+ct

0

v0(u) du + A−
∫ −x+ct

0

v0(u) du− A
)

= 1
2 (s0(x + ct) + s0(x− ct)) + 1

2c

∫ x+ct

−x+ct
v0(u) du

Note that the A cancels out, and we’ve used the fact that s0 is odd. Because

v0(x) is odd, the integral on the right can be rewritten as∫ x+ct

−x+ct
v0(u) du =

∫ x−ct

−x+ct
v0(u) du+

∫ x+ct

x−ct
v0(u) du = 0+

∫ x+ct

x−ct
v0(u) du,

so that we get the formula

(5) y(x, t) = 1
2 (s0(x + ct) + s0(x− ct)) + 1

2c

∫ x+ct

x−ct
v0(u) du

(cf. Benson, page 101). This formula can be interpreted as saying, the

value of y(x, t) is the average of the initial position of the string at the

points x + ct and x − ct, plus the average value of the initial velocity

between those two points. In particular, if you draw lines from the point

(x, t) backwards in time, with slope 1/c, and shade in the triangle formed

by the intersections of these lines with the line t = 0, then the value of

y(x, t) depends only on initial data along the part of the line t = 0 that

forms the base of this triangle (see Figure 4).

Plucking. For the moment, suppose that we have the special situation

where v0(x) is identically zero and s0(x) looks like two sides of a triangle,

where the remaining side is a line segment of length ` along the x-axis.

Because s0(x) = y(x, 0) is odd and 2`-periodic, we extend it to all x by

rotating the triangle by 180 degrees around one end of the segment, then

horizontally translating that figure by multiples of 2` units to the left and

right (see Figures 3.7 and 3.8 in Benson).
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Because v0(x) = 0, f ′(x) is even, and f (x) is odd, with f (x) = 1
2s0(x).

This means that the shape y(x, t) of the plucked string at subsequent times

is the sum of two copies of 1
2s0(x), one travelling to the right and one

travelling to the left.

[Animate with Mathematica.]

Assignment. Read Benson sections 3.1 through 3.3

Problems: Do p.99 #1, 2, and the following

A. Verify that the d’Alembert formula y(x, t) = f (x + ct) + g(x − ct),

where f and g are differentiable functions, satisfies the the wave equation.

B. Suppose that y(x, t) is a solution of the wave equation equation with

v0(x) = 0 and

s0(x) =

{
1 when − 1 < x < 1,

0 otherwise

Sketch the graphs of y(x, 1
2), y(x, 1) and y(x, 2). (Hint: Formula (5) may

be helpful.)
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