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Hypersurfaces with Codazzi-type shape operator
for a Tanaka–Webster connection

By THOMAS A. IVEY (Charleston) and PATRICK J. RYAN (Hamilton)

Abstract. Perez and Suh have classified the hypersurfaces in complex projective

space CPn which satisfy the condition given in the title, under the assumption that

n ≥ 3. In this paper, we complete the classification by proving the same result for the

complex hyperbolic space CHn as well as for CPn. Our proof holds for all n ≥ 2.

1. Introduction

The Tanaka–Webster connection [12], [15] originally occurred in the study

of pseudo-Hermitian CR-manifolds, and was later extended by Tanno [13] to

contact metric manifolds. It has recently been generalized to hypersurfaces in

complex space forms by Cho, who introduced the generalized Tanaka–Webster

(abbreviated g-Tanaka–Webster) connection and studied hypersurfaces that are

parallel [3], or that have constant holomorphic sectional curvature [4] with respect

to this connection.

The Hopf hypersurfaces in CPn and CHn that have constant principal curva-

tures are open subsets of certain model spaces (Takagi’s list [11] and Montiel’s

list [7], described in more detail below) which have a well-established nomencla-

ture:

• Types A1, A2, B, C, D and E in CPn (Takagi’s list)

• Types A0, A1, A2, and B in CHn (Montiel’s list).

Types A0, A1 and A2 are referred to collectively as Type A.
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Perez and Suh [9] proved

Theorem 1. Let M2n−1, where n ≥ 3, be a real hypersurface in CPn whose

shape operator is of Codazzi type with respect to a g-Tanaka–Webster connection.

Then M must be a Hopf hypersurface.

and

Theorem 2. Let M2n−1, where n ≥ 2, be a Hopf hypersurface in CPn and

let ∇̂(k) be a g-Tanaka–Webster connection for which 2k ̸= α. Then M is of

Codazzi type with respect to ∇̂(k) if and only if M is an open subset of a Type

A hypersurface.

Here α is the Hopf principal curvature and k is the real number determining

the particular g-Tanaka–Webster connection. This connection will be defined in

§3. For a detailed explanation of its relationship to the theory of CR-manifolds,

the induced almost contact metric structure and the constructions of Tanaka,

Webster, and Tanno, the interested reader is referred to the review of [9] by

S. Dragomir in Mathematical Reviews (MR3150837).

The purpose of this paper is to complete the classification of Perez and Suh

by proving that the same results hold for both ambient spaces, CPn and CHn, and

for all n ≥ 2 (see Theorems 5, 7 and 8). The authors are grateful to the referee

who pointed out a deficiency in an earlier version of our proof of Theorem 7.

In our exposition, all manifolds are assumed connected and all manifolds and

maps are assumed smooth (C∞) unless stated otherwise.

2. Basic equations and results for hypersurfaces

We follow the notation and terminology of [8]. M2n−1 will be a hypersurface

in a complex space form, either CPn or CHn, of constant holomorphic sectional

curvature 4c = ±4/r2. The locally defined field of unit normals is ξ, the structure

vector field is W = −Jξ and φ is the tangential projection of the complex struc-

ture J . The holomorphic distribution consisting of all tangent vectors orthogonal

to W is denoted by W⊥ and φ2X = −X for all X ∈ W⊥.

The shape operator A of M is defined by

AX = −∇̃Xξ

where ∇̃ is the Levi–Civita connection of the ambient space and X is any tangent

vector to M . (It follows that ∇XW = φAX, see [8] p. 239.) The eigenvalues of A
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are the principal curvatures and the corresponding eigenvectors and eigenspaces

are said to be principal vectors and principal spaces. The function ⟨AW,W ⟩ is

denoted by α. If W is a principal vector at all points of M (and so AW = αW ),

we say that M is a Hopf hypersurface and α is called the Hopf principal curvature.

For a Hopf hypersurface, the Hopf principal curvature is constant. We state the

following fundamental facts (see Corollary 2.3 of [8]).

Lemma 3. Let M be a Hopf hypersurface and let X ∈ W⊥ be a principal

vector with associated principal curvature λ. Then

(1)
(
λ− α

2

)
AφX =

(
λα
2 + c

)
φX;

(2) If AφX = νφX for some scalar ν, then λν = λ+ν
2 α+ c;

(3) If ν = λ in (2), then λ2 = αλ+ c.

Takagi’s list and Montiel’s list. The Takagi/Montiel list consists precisely

of the complete Hopf hypersurfaces with constant principal curvatures in their

respective ambient spaces as determined by Kimura [6] and Berndt [1]. Equiv-

alently, it is the list of homogeneous Hopf hypersurfaces, a fact that follows from

the work of Takagi [10] and Berndt [1]. Non-Hopf homogeneous hypersurfaces

exist in CHn but not in CPn.

Takagi’s list for CPn

• (A1) Geodesic spheres (which are also tubes over totally geodesic complex

projective spaces CPn−1).

• (A2) Tubes over totally geodesic complex projective spaces CPk, 1 ≤ k ≤
n− 2.

• (B) Tubes over complex quadrics (which are also tubes over totally geodesic

real projective spaces RPn).

• (C) Tubes over the Segre embedding of CP 1 × CPm where 2m+ 1 = n and

n ≥ 5.

• (D) Tubes over the Plücker embedding of the complex Grassmann manifold

G2,5 (which occur only for n = 9).

• (E) Tubes over the canonical embedding of the Hermitian symmetric space

SO(10)/U(5) (which occur only for n = 15).

Note that when n = 2, the only types that occur are A1 and B.

Montiel’s list for CHn

• (A0) Horospheres.

• (A1) Geodesic spheres and tubes over totally geodesic complex hyperbolic

spaces CHn−1.
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• (A2) Tubes over totally geodesic complex hyperbolic spaces CHk, 1 ≤ k ≤
n− 2.

• (B) Tubes over totally geodesic real hyperbolic spaces RHn.

Note that Type A2 cannot occur when n = 2.

3. The g-Tanaka–Webster connections

Let M2n−1 be a real hypersurface in CPn or CHn where n ≥ 2. For a nonzero

real constant k, we define the g-Tanaka–Webster connection by the formula

∇̂(k)
X Y = ∇XY + ⟨φAX, Y ⟩W − ⟨W,Y ⟩φAX − k⟨W,X⟩φY.

For motivation and further explanation of this definition, see [3] and [5].

To say that A is a Codazzi tensor (or of Codazzi type) with respect to ∇̂(k)

means that for all tangent vectors X and Y ,(
∇̂(k)

X A
)
Y −

(
∇̂(k)

Y A
)
X = 0. (1)

In view of the Codazzi equation for hypersurfaces in complex space forms (see

[8], equation (1.9)), this is equivalent to the following condition:

c(⟨X,W ⟩φY − ⟨Y,W ⟩φX + 2⟨X,φY ⟩W )

= −2⟨AφAX, Y ⟩W + ⟨(φA+Aφ)X,Y ⟩AW

− ⟨W,AX⟩φAY + ⟨W,AY ⟩φAX + ⟨W,X⟩AφAY − ⟨W,Y ⟩AφAX

+ k(⟨W,X⟩(φA−Aφ)Y − ⟨W,Y ⟩(φA−Aφ)X). (2)

This is the same as equation (3.2) in [9] if we set c = 1 and make the obvious

translation of notation.

Taking the inner product of (2) with W yields

2c⟨X,φY ⟩+ 2⟨AφAX,Y ⟩ − α⟨(φA+Aφ)X,Y ⟩
= −⟨W,X⟩⟨Y,AV ⟩+ ⟨W,Y ⟩⟨X,AV ⟩ − k⟨W,Y ⟩⟨X,V ⟩+ k⟨W,X⟩⟨Y, V ⟩, (3)

where V = φAW . Because this holds for all Y , we have

2
(
AφA− α

2
(φA+Aφ)− cφ

)
X = ⟨X, (A− k)V ⟩W − ⟨W,X⟩(A− k)V. (4)



Hypersurfaces with Codazzi-type shape operator . . . 283

Now take the inner product of (4) withW . Since ⟨(A−k)V,W ⟩ = ⟨V, (A−k)W ⟩ =
⟨φAW, (A− k)W ⟩ = 0, we obtain

2
⟨
X,

(
A− α

2

)
V
⟩
+ ⟨X, (A− k)V ⟩ = 0

for all X, i.e.

AV =
1

3
(α+ k)V. (5)

Thus (4) becomes

2
(
AφA− α

2
(φA+Aφ)− cφ

)
X =

1

3
(α− 2k)(⟨X,V ⟩W − ⟨W,X⟩V ). (6)

In particular, taking X = V and using (5) yields

(α− 2k)(AφV + |V |2W ) + (α2 + kα+ 6c)φV = 0. (7)

On the other hand, if we set X = W and Y = V in (2), we get

(α− 2k)(AφV + |V |2W ) = (3c+ α2 − k2 + 3|V |2)φV (8)

where we have used (5) and the fact that AW −αW = −φV , so that ⟨AφV,W ⟩ =
−|V |2. Thus, if V ̸= 0, we have

2α2 + kα− k2 + 9c+ 3|V |2 = 0. (9)

Lemma 4. The span of {W,AW} is A-invariant.

Proof. This is clearly true if AW = αW so we assume that β = |AW −
αW | = |V | ̸= 0 and let U be the unit vector such that φV = −βU . Then

AW = αW + βU . Also, {W,AW} and {W,U} have the same span.

If α − 2k ̸= 0, then AU is a linear combination of U and W by (7). On

the other hand, if α = 2k, then (7) gives α2 + kα + 6c = 0, which reduces to

α2 + 4c = 0. However, (8) now gives 0 = 3c+ α2 − k2 + 3β2 = 3c− 4c+ c+ 3β2,

which contradicts V ̸= 0. �

4. The case n ≥ 3

We continue to assume that W is not principal. By Lemma 4 and the fact

that V is principal, the orthogonal complement to the span of {W,U, V } is also

A-invariant. Suppose that X is a unit principal vector orthogonal to this span
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and that X corresponds to a principal curvature λ ̸= α
2 . Then (6) shows that φX

is also principal and the corresponding principal curvature ν satisfies the formula

familiar from the study of Hopf hypersurfaces (see Lemma 3)

λν =
λ+ ν

2
α+ c. (10)

However, if we evaluate (2) with this particular X and with Y = W , we get

−cφX = αλφX − λνφX − k(λ− ν)φX

which, using (10), simplifies to

(λ− ν)(α− 2k) = 0.

Since we have already shown that α = 2k leads to a contradiction, we conclude

that λ = ν.

Now consider (2) with Y = −φX (so that X = φY ). Most terms are zero,

but the remaining ones give

2cW = 2λ2W − 2λAW. (11)

This contradicts our assumption that W is not a principal vector. We conclude

that if X is any unit principal vector orthogonal to the span of {W,U, V }, the
associated principal curvature must be α

2 . However, if we now evaluate (2) with

Y = −φX and λ = ν = α
2 , we get the same equation (11) which is again a

contradiction.

We conclude that there are no principal vectors orthogonal to the span of

{W,U, V }, i.e. a non-Hopf hypersurface satisfying (1) cannot occur for n ≥ 3.

Thus, we have proved the following theorem which extends the first theorem of

Perez and Suh to cover CHn as well as CPn.

Theorem 5. Let M2n−1, where n ≥ 3, be a real hypersurface in CPn or

CHn whose shape operator is of Codazzi type with respect to a g-Tanaka–Webster

connection. Then M must be a Hopf hypersurface.

5. The case n = 2

If we review our previous analysis, restricting ourselves to the case n = 2,

everything in §3 applies. We assume again that AW ̸= αW , and consequently α−
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2k is nonvanishing. The triple of vectors (W,U,φU) constitutes an orthonormal

basis for the tangent space and the shape operator can be expressed relative to

this basis by the matrix α β 0

β λ 0

0 0 ν

 (12)

where β ̸= 0 and ν = (α+ k)/3.

Taking X = U and Y = φU in (2), we get

(λ+ ν)AW = −νβU + 2(λν − c)W.

Since ⟨AW,U⟩ = β, we get λ = −2ν. Similarly, taking inner product with W , we

get (λ+ ν)α = 2(λν − c), which now reduces to

4ν2 − να+ 2c = 0. (13)

Expressing ν in terms of α and k, we get

α2 + 5αk + 4k2 + 18c = 0. (14)

Thus ν and λ are nonzero constants and α is also constant. But we also have the

following result, which will be proved below:

Lemma 6. Any hypersurface in CP2 or CH2 whose shape operator has the

form (12) with α and ν constant and λ = −2ν, also has β constant.

Thus M has constant principal curvatures. In CP2 this is already a contra-

diction, since all hypersurfaces with constant principal curvatures must be Hopf,

as was shown long ago by Q. M. Wang [14]. For CH2, according to the classifi-

cation of Berndt and D́ıaz-Ramos [2], M must be an open subset of a standard

homogeneous hypersurface. However, for such a hypersurface, the trace of A is

4ν while that of M is α − ν. For these to be the same, we would need α = 5ν

which is clearly inconsistent with 4ν2 − να+ 2c = 0. Thus, the assumption that

M is not Hopf has led to a contradiction, and we have proved

Theorem 7. Let M3 be a real hypersurface in CP2 or CH2 whose shape

operator is of Codazzi type with respect to a g-Tanaka–Webster connection. Then

M must be a Hopf hypersurface.
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Proof of Lemma 6. Let Ṽ = φU so that V = φAW = βṼ . We will use

the Codazzi equation

(∇XA)Y − (∇Y A)X = c(⟨X,W ⟩φY − ⟨Y,W ⟩φX + 2⟨X,φY ⟩W )

for a hypersurface in a complex space form (see [8] p. 238), along with special

properties of our basis vectors W , U , Ṽ , to derive formulas for covariant deriva-

tives of the basis vectors in terms of the coefficients in the matrix (12). We group

the computations into steps [i]–[iv]:

[i] ∇WW = βṼ , ∇UW = λṼ and ∇Ṽ W = −νU .

These follow immediately from the identity ∇XW = φAX.

[ii] ∇W Ṽ = (α− 3ν)U − βW and ∇Ṽ Ṽ = 0.

Consider the Codazzi equation with X = Ṽ and Y = W . Its right side is

cU , while its left side is the difference of

(∇Ṽ A)W = ∇Ṽ (αW + βU)−A∇Ṽ W = −ν(α−A)U + (Ṽ β)U + β∇Ṽ U

= −ν(α− λ)U + νβW + (Ṽ β)U + β∇Ṽ U

and

(∇WA)Ṽ = (ν −A)∇W Ṽ .

Taking the inner product of the Codazzi equation with W , we get

νβ + β⟨∇Ṽ U,W ⟩ = ⟨(ν −A)∇W Ṽ ,W ⟩

νβ − β⟨U,−νU⟩ = ⟨∇W Ṽ , (ν − α)W ⟩+ ⟨∇W Ṽ ,−βU⟩

2νβ = −(ν − α)⟨Ṽ , βṼ ⟩ − β⟨∇W Ṽ , U⟩.

Thus ⟨U,∇W Ṽ ⟩ = α− 3ν, so that

∇W Ṽ = (α− 3ν)U − βW.

On the other hand, the inner product of the Codazzi equation with Ṽ yields

⟨∇Ṽ U, Ṽ ⟩ = 0. Since we already know that

⟨∇Ṽ Ṽ ,W ⟩ = −⟨Ṽ ,∇Ṽ W ⟩ = 0,

we have ∇Ṽ Ṽ = 0.

[iii] ∇UU = τ Ṽ where τ satisfies βτ = (β2 − c) + 5να− 11ν2.
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Consider the Codazzi equation with X = U and Y = W . Then (∇UA)W

reduces to

λ(α− ν)Ṽ + β∇UU + (Uβ)U

while (∇WA)U is

(λ−A)∇WU + (Wβ)W + β2Ṽ .

The right side is −cṼ . Taking the inner product with Ṽ yields βτ = (β2 − c) +

5να− 11ν2 where τ = ⟨∇UU, Ṽ ⟩ and we have used the fact that λ = −2ν. Since

⟨∇UU,W ⟩ = −⟨U,∇UW ⟩ = 0,

we have ∇UU = τ Ṽ .

[iv] τ = 0.

Consider the Codazzi equation with X = U and Y = Ṽ . We can use our

knowledge of ∇UU and ∇UW to get ∇U Ṽ = −λW − τU . Then

(∇UA)Ṽ = −(ν −A)(λW + τU) = −λ(ν − α)W + λβU − τ(ν − λ)U + τβW

= (αλ− λν + τβ)W + (λβ − τν + λτ)U = (2ν2 − 2να+ τβ)W − (2νβ + 3τν)U

and

(∇Ṽ A)U = (λ−A)∇Ṽ U + (Ṽ β)W + β∇Ṽ W

= ν(λ− α)W − νβU + (Ṽ β)W − βνU

= −(2ν2 + να)W − νβU + (Ṽ β)W − βνU,

where we have used the fact that∇Ṽ U = νW . This is clear because∇Ṽ W = −νU

and ∇Ṽ Ṽ = 0. The right side of the Codazzi equation is −2cW . Now take the

inner product of both of these expressions with U to get −2νβ − 3τν + 2νβ = 0,

i.e. τ = 0.

Thus, from [iii] and [iv] we see that β is constant. �
Remark. For further details on hypersurfaces with constant principal curva-

tures, we refer the reader to Proposition 3.5 of [2]. In the notation of Berndt

and D́ıaz-Ramos, there is one principal direction orthogonal to W with principal

curvature λ3 and the sum of the other two principal curvatures is 3λ3. Since their

λ3 is our ν, this justifies our statement that A has trace equal to 4ν.

Both [14] and [2] assume three distinct constant principal curvatures. How-

ever, this is implied by our situation, since if ν were to have multiplicity 2, we

would have, by (12),

(α− ν)(λ− ν)− β2 = 0.

Comparing this with our determination of β2 from [iii] and [iv] gives 8ν2− 2να+

c = 0 which contradicts (13).
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6. Hopf hypersurfaces with ∇̂(k)-Codazzi shape operator

Suppose now thatM is a Hopf hypersurface satisfying (1). Then, the analysis

of §4 and §5 holds with |V | = β = 0. In particular, (6) gives(
AφA− α

2
(φA+Aφ)− cφ

)
X = 0 (15)

for all X ∈ W⊥. If X ∈ W⊥ is a unit principal vector with AX = λX where

λ ̸= α
2 , we have AφX = νφX where λ and ν satisfy (10). On the other hand, if

we set Y = W in (2), we obtain

−cφX = αλφX − λνφX − k(λ− ν)φX

which simplifies to (α
2
− k

)
(λ− ν) = 0.

Now k is constant and, since M is a Hopf hypersurface, α is also constant. If

k ̸= α
2 , we have λ = ν so that λ2 = αλ+ c and hence there are at most two values

for λ. Consider the possibility that there are three distinct principal curvatures λ1,

λ2 and
α
2 corresponding to principal vectors in W⊥. Then there is a neighborhood

in M which is a Hopf hypersurface with these particular constant values for the

principal curvatures. However, this is impossible since there is nothing in the lists

of Takagi and Montiel with these data. (For principal curvature information on

these hypersurfaces, see [8], pp. 257–261.)

A second possibility is that we have principal curvatures λ1 and λ2 as in

the previous paragraph, but their principal spaces span W⊥. Then, there is a

neighborhood U with the same constant principal curvatures and multiplicities.

Then Umust be an open subset of a Type A2 hypersurface. For any specific choice

of λ1 and λ2 (and associated multiplicities), the set of points of M matching these

data is open and closed and is hence all of M .

This exhausts the possibility of the existence of a point with two distinct

values of λ. If there is a point where there is one value of λ, there cannot also

be a principal curvature equal to α
2 , by an argument similar to the one used for

the
(
λ1, λ2,

α
2

)
possibility. Thus, there is a neighborhood U where there is one

constant principal curvature whose principal space is W⊥. Then U must be an

open subset of a Type A1 hypersurface, and by the same connectedness argument,

M itself is an open subset the same hypersurface.

The only remaining possibility is that for every point of M , α
2 is a principal

curvature whose principal space is W⊥. Then M must be an open subset of a

horosphere.
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Finally, for any constant k ̸= 0, and every Type A hypersurface M in CPn

or CHn, the shape operator is of Codazzi type with respect to the g-Tanaka–

Webster connection ∇̂(k). This is straightforward to check using (2) together

with the observation that W⊥ consists of one or two A-invariant eigenspaces.

Thus, we have the following theorem.

Theorem 8. Let M2n−1, where n ≥ 2, be a Hopf hypersurface in CPn or

CHn and let ∇̂(k) be a g-Tanaka–Webster connection for which 2k ̸= α. Then M

is of Codazzi type with respect to ∇̂(k) if and only if M is an open subset of a

Type A hypersurface.

Remark. One can check that for any Hopf hypersurface with α ̸= 0, the shape

operator is of Codazzi type with respect to one particular g-Tanaka–Webster

connection, namely the one determined by k = α
2 . Thus, the specification that

2k ̸= α is necessary to characterize the Type A hypersurfaces. This should be

taken into account in interpreting the statement of Theorem 1.2 in [9].
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