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Abstract The Pick cubic form is a fundamental invariant in the (equi)affine

differential geometry of hypersurfaces. We study its role in the affine isomet-
ric embedding problem, using exterior differential systems (EDS). We give

pointwise conditions on the Pick form under which an isometric embedding
of a Riemannian manifold M3 into R4 is rigid. The role of the Pick form

in the characteristic variety of the EDS leads us to write down examples of

non-rigid isometric embeddings for a class of warped product M3’s.

1. Introduction

A strictly convex hypersurface M in Rn+1 can be given a Riemannian
metric in a way that is invariant under affine motions, i.e., the action of
SL(n + 1) and translations. Essentially, if f is the position in Rn+1 as a
function of local coordinates on M , let

hij = det
(
∂f

∂x1
, · · · , ∂f

∂xn
,
∂2f

∂xi∂xj

)
.

Because of convexity, the coordinates can be chosen so that hij is positive
definite; then the metric is

gij = (deth)

( −1
n+ 2

)
hij

(see [Ca]). Alternatively, given a transverse vector field N along the hy-
persurface, define a connection ∇, for vector fields X and Y along M , by
splitting the ordinary derivative

DXY = g(X,Y )N +∇XY

into transverse and tangential parts. By wedge product with N , the invariant
volume form on the ambient space gives a volume form Ω on M . Then N
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is the unique affine normal, and g is the affine metric, if Ω is parallel with
respect to ∇ and coincides with the volume form of g (see [No]). The second
formulation will allow us to define the metric using moving frames. Note that
∇ is not necessarily the Levi-Civita connection for g: the difference between
the two is essentially the Pick form. The Pick form is a totally symmetric
cubic form on the tangent space, which is traceless with respect to g. Quadric
hypersurfaces are characterized by the vanishing of the Pick form.

In this article we will discuss the affine isometric embedding problem:
that is, given a Riemannian metric g on Mn, what are the strictly convex
embeddings of M into Rn+1 such that the affine invariant metric coincides
with g? From a naive point of view, asking for such an embedding amounts to
asking n+1 functions—the components of f—to satisfy a system of n(n+1)/2
second-order partial differential equations. This is overdetermined when n >
2. Even when n = 2, the determined case, it is not known for which metrics
on M = S2 there exist solutions defined on all of M . Although the affine
invariant metrics for quadric hypersurfaces in all dimensions have constant
curvature, it is not known for n > 2 if this is even the only local way of
embedding these metrics.

The question we will address in this article is: if a metric on M can be
isometrically embedded, is it rigid? We will concentrate on the first overde-
termined case, when n = 3. Our results depend on the SO(3)-invariant
properties of the Pick form. For instance, once one complexifies and pro-
jectivizes the tangent space at a point of M , the cubic form defines a cubic
curve in CP2 which we will call the Pick curve. Generically, one expects
there to be six points on this curve that are isotropic (null) directions for the
quadratic form obtained by complexifying the metric. However, for the EDS
whose integral manifolds correspond to isometric embeddings, the character-
istic variety is consists of the double points of this intersection. This fact
leads to

Theorem 1. For any Riemannian three-manifold, the set of affine isometric
embeddings with whose Pick curve contains no double isotropic points is
finite-dimensional.

In standard coordinates on a three-dimensional inner product space, a
traceless cubic form becomes a harmonic cubic polynomial. We will say that
a harmonic cubic σ on R3 is SO(3)-generic if the linear map Φ from the space
of harmonic quintics α on R3 to the space of 2-form-valued quadratics, given
by

Φ(α) := Σ
i,j

∂2 dσ

∂xi∂xj
∧ ∂2 dα

∂xi∂xj
, (1)

is injective. (As explained in §4, the map Φ is in fact the direct sum of
two homomorphisms belonging to the Clebsch-Gordan decomposition for the
tensor product of the SO(3) modules containing σ and α.) Calculating the
prolongations of the EDS leads to
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Theorem 2. An affine isometric embedding of a connected M3 with SO(3)-
generic Pick form is completely determined, up to affine motions, by the value
of the Pick form and its covariant derivative at one point of M .

This result should be compared with the affine analogue of Bonnet’s the-
orem, which says that a traceless cubic form on a Riemannian manifold Mn,
satisfying certain integrability conditions, is the Pick form for an affine iso-
metric embedding of M into Rn+1 which is unique up to affine motions (see
[Si], e.g.). In other words, the Pick form as a tensor field determines the
embedding, up to affine motions.

We should reassure the reader that if a harmonic cubic satisfies the hy-
potheses of Theorem 2, then it satisfies those of Theorem 1. For, if the curve
defined by a harmonic cubic has double isotropic points, we can arrange by
rotation that they are [1,±i, 0], whereupon the cubic must have the form

σ = az(2z2 − 3x2 − 3y2) + (bx+ cy)(12z2 − 3x2 − 3y2). (2)

One can also arrange, by rotation, that c = 0. (In fact, this shows that the
space of cubics with double isotropic points is of codimension two in the space
of all harmonic cubics in three variables.) Using this form for the cubic, it
is easy to check that the map Φ has a two-dimensional kernel. However, not
every cubic satisfying the hypotheses of Theorem 1 satisfies those of Theorem
2: neither of the harmonic cubics xyz and λx(4z2−x2−y2)+λz(4y2−x2−z2)
has double isotropic points, but the former is SO(3)-generic while the latter
is not.

To have any hope that the space of integral manifolds of an EDS is more
than finite-dimensional, the characteristic variety must be non-empty. This
leads us to classify, using another EDS, the hypersurfaces for which the Pick
form has the form (2) at each point. In particular, among the hypersurfaces
for which the Pick curve is reducible, there are a set of hypersurfaces whose
metrics are warped products of constant-curvature surfaces. This leads to:

Theorem 3. A warped product dt2 +f(t)2ds2, where ds2 is a constant cur-
vature metric on a surface, has a 1-parameter family of local affine isometric
embeddings which are distinct under affine motions.

We will briefly outline the rest of the paper. In §2 we introduce moving
frames and set up an EDS for affine isometric embedding. In §3 we compute
the characteristic variety for the first prolongation of this system when n =
3, and prove Theorem 1. In §4 we show that the tableau for the third
prolongation is empty in the generic case, and prove Theorem 2. In §5
we classify hypersurfaces for which the Pick form has the form (2), prove
Theorem 3, and construct global isometric embeddings, as hypersurfaces of
this type, for certain warped product metrics on S3. We also include an
appendix with two lemmas, used in §5, concerning linear tableaux and the
“saturation” of linear Pfaffian systems.
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2. The isometric embedding system

Let F be the affine frame bundle of Rn+1, n ≥ 2; an affine frame at a
point in Rn+1 is a basis e0, · · · , en of the tangent space there, such that the
vectors form the columns of a matrix with determinant one. On F we regard
the basepoint projection x and e0, · · · , en as Rn+1-valued functions, and we
have the 1-forms ωα and ωα

β defined by

dx = eαω
α deα = eβω

β
α

and satisfying the structure equations

dωα = −ωα
β ∧ ωβ dωα

β = −ωα
γ ∧ ω

γ
β . (3)

(We will use the summation convention, and the index ranges 0 ≤ α, β, γ ≤ n
and 1 ≤ i, j, k ≤ n.) On F the only linear relation these forms satisfy is

ω0
0 + · · ·+ ωn

n = 0. (4)

A smooth convex hypersurfaceMn ⊂ Rn+1 can be equipped with a smooth
framing such that e1, · · · , en are tangent to the hypersurface and orthonormal
for the affine invariant metric, and e0 is the affine normal. (Of course, such
a framing is not unique.) By definition, this gives a lift of M into F to
which the 1-forms ω0, ω0

0 and ω0
i − ωi, for 1 ≤ i ≤ n, restrict to be zero. By

differentiating the last set of 1-forms, using (3), we see that

ωi
j + ωj

i = 2sijkω
k, sikj = sijk (5)

when restricted. The Pick form is sijkω
iωjωk; because of (4), it satisfies the

tracelessness, or ‘apolarity’, condition sijj = 0. Differentiating ω0
0 = 0 shows

that
ωi

0 = 2Lijω
j , Lji = Lij . (6)

The affine second fundamental form is −2Lijω
iωj ; our normalizations here

are chosen to avoid fractions later on. Let

ωi
j = σi

j + τ i
j (7)

where σi
j = σj

i and τ i
j = −τ j

i . Then (5) and the structure equations (3) show
that τ i

j are the Levi-Civita connection forms for the metric.
Now let Mn be a given Riemannian manifold, and let B be the orthonor-

mal frame bundle of M , equipped with canonical forms ηi and connection
forms ηi

j = −ηi
j . If f : M → Rn+1 is an affine isometric embedding, then

an affine framing along f(M), as constructed above, will correspond via f∗
to an orthonormal frame on M , i.e., a section of B. The two framings can
be regarded as lifts of M into B and into F , and in this way we obtain
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an n-dimensional submanifold of B × F along which the canonical forms ηi

and ωi coincide. (Consequently, the Levi-Civita connection forms ηi
j and τ i

j

must also coincide.) Thus, these ‘graphs’ will be integral submanifolds of the
Pfaffian system

I = {ω0, ω0
0 , ω

0
i − ωi, ηi − ωi, ηi

j − τ i
j}

on B×F . Conversely, any n-dimensional integral submanifold of this system,
on which the n-form ω1∧· · ·∧ωn is nonzero at each point, gives the ‘graph’—
in terms of an identification of orthonormal frames—of an affine isometric
embedding of M .

Once one has such an integral submanifold, others can be obtained by si-
multaneously rotating the frames in question; of course, this does not change
the underlying embedding f , but it does show how the group O(n) acts si-
multaneously in B and F to give automorphisms of the system I. The action
of O(n) generates a foliation of B×F with n(n−1)/2-dimensional leaves; one
refers to the directions along these leaves as Cauchy characteristic directions.

Let I0 be the differential ideal generated by I. To complete a set of
generators for I0, we need to add the exterior derivatives:

dω0 ≡ 0

d(ω0
i − ωi) ≡ 2σi

j ∧ ωj

d(ω0
0) ≡ ωi

0 ∧ ωi

d(ηi − ωi) ≡ σi
j ∧ ωj

2d(ψi
j − τ i

j) ≡ 2σi
k ∧ σk

j + ωi
0 ∧ ωj − ωj

0 ∧ ωi +Ri
jklω

k ∧ ωl


mod I. (8)

Our main tool for the study of I0 and its prolongations will be the char-
acteristic variety. Given an integral n-plane E of I0—i.e., an n-dimensional
subspace of the tangent space at some point of B×F , to which all the forms
in I0 restrict to be zero—a hyperplane in E is characteristic if E is not the
only integral n-plane containing that hyperplane. The set of characteristic
hyperplanes forms an algebraic variety ΞE ⊂ P(E∗), whose equations may be
complexified to define the complex characteristic variety ΞC,E . We will only
be concerned with integral n-planes which satisfy the independence condition

ω1 ∧ · · · ∧ ωn|E 6= 0. (9)

Then any ξ ∈ E∗ can be expressed as ξiωi, and we can use the ξi as homo-
geneous coordinates on P(E∗).

(If one strictly adheres to this definition, the fact that, in our case, one
can always obtain a new integral plane by adding a Cauchy characteristic
direction to E means that all hyperplanes are characteristic. To circumvent
this, one can either work with a differential system defined on the quotient
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of B × F by the O(n) action, or one can adjoin the forms τ i
j , which form a

coframing along the Cauchy characteristic leaves, to the independence con-
dition. In the latter case, one wants E to be n(n + 1)/2-dimensional, but
the points of ΞE all lie in the subspace spanned by the ωi (see [Br2], §V.2).
Since the same equations for ΞE are obtained when one simply ignores the
forms τ i

j in the calculation, this is what we will do.)

Proposition 2.1. Let E be an integral n-plane of I0 satisfying (9). Then
ΞC,E is contained in the quadric defined by

ξ21 + · · ·+ ξ2n = 0. (10)

Proof. As in (5), (6), σi
j |E= sijkω

k and ωi
0|E= 2Lijω

j . The E is annihi-
lated by

σ̃i
j := σi

j −Aijkω
k

ω̃i
0 := ωi

0 −Bijω
j .

The system 2-forms can be rewritten at the basepoint of E as

ω̃i
0 ∧ ωi, σ̃i

j ∧ ωj , 2σ̃i
k ∧ σ̃k

j + ω̃i
0 ∧ ωj − ω̃j

0 ∧ ωi.

Let ξ = ξiω
i. Any integral element containing the hyperplane ξ⊥ ⊂ E

must be annihilated by the forms in I and by the forms

θkl = ξkω̃
l
0 − ξlω̃

k
0

θi
kl = ξkσ̃

i
l − ξlσ̃

i
k

θij
kl = ξkω̃

i
0δ

j
l − ξlω̃

i
0δ

j
k − ξkω̃

j
0δ

i
l + ξlω̃

j
0δ

i
k.

(11)

These are obtained by wedging the above 2-forms with ξ and factoring out
ωk ∧ ωl. We will show that, if (10) does not hold, the forms θkl, θi

kl and θij
kl

have the same span as the σ̃i
j and ω̃i

0. This will imply that E is the only
integral element containing the hyperplane.

Let ξ · ξ = ξ21 + · · ·+ ξ2n. Notice that∑
k

ξkθ
i
kl = ξ · ξσ̃i

j − ξl
∑

k

ξkσ̃
i
k

and ∑
k

θk
kl =

∑
k

ξkσ̃
k
l =

∑
k

ξkσ̃
l
k.

Thus, ∑
k

ξkθ
i
kl + ξlθ

k
ki = (ξ · ξ)σ̃i

j ,
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which shows that the forms θi
kl have the same span as the σ̃i

j .
It remains to obtain the n forms ω̃i

0 as combinations of the forms in (11).
Disable the summation convention, and set l = j in the third set of forms in
(11). If i 6= j, ∑

k

ξkθ
ij
kj = (ξ · ξ − ξ2j )ω̃i

0 + ξiξjω̃
j
0. (12)

If (10) does not hold, there must be a j such that

ξ · ξ − ξ2j 6= 0. (13)

Then (12) gives n− 1 independent forms. For this j, either ξj = 0 or ξj 6= 0.
If ξj = 0, then ξi 6= 0 for some i 6= j, and θij is independent of the forms in
(12). If ξj 6= 0, the form

θij
ij = ξiω̃

i
0 + ξjω̃

j
0

will be independent of those in (12) unless ξ · ξ − ξ2i − ξ2j = 0. But if that
happens for all i 6= j, then, assuming n > 2, we have ξ ·ξ−ξ2j = 0 by addition,
contradicting (13). Finally, if n = 2, it is easy to see that, when ξ · ξ 6= 0, θ12
and θ1212 have the same span as ω̃1

0 , ω̃2
0 . �

Corollary 2.2. The affine isometric embedding system is elliptic for all n.

The situation is very different for Euclidean isometric embedding. There,
in the determined case, the system is never elliptic for n ≥ 3 (see [Br1]).

3. The case n = 3 and the first prolongation

The prolongation of an exterior differential system with independence con-
dition is obtained by restricting the canonical contact system to the space of
integral elements. On any integral n-plane of I0 satisfying (9), the vanishing
of the 2-forms (8) imply (5) and (6) for some sijk and Lij satisfying the
usual conditions. As well, the exterior derivatives of ηi

j − τ i
j give the Gauss

equations:

silmsmjk − sikmsmjl + δilLjk − δikLjl + δjkLil − δjlLik = Rijkl. (14)

Tracing (14) gives the equation for the Ricci tensor of M :

sijmskjm + (2− n)Lik − δikLjj = Rik, (15)

which is equivalent to the Gauss equations when n = 3. So, when n = 3,
the integral 3-planes of I0 can be parameterized by letting Lij be defined
by (15), with no restrictions on the sijk. (However, when n > 3, there are
always quadratic restrictions on sijk involving the Weyl tensor of M .)

For n = 3, our prolongation I1 will be defined on B × F × S3
0V . (In

what follows, V stands for R3 and Sk
0V for the irreducible SO(3) module of
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traceless symmetric k-forms on R3.) The one-forms of I1 will be those of I0

with the addition of
σ̃i

j := σi
j − sijkω

k

ω̃i
0 := ωi

0 − 2Lijω
j ,

(16)

where Lij is defined by solving (15):

Lij = siklsjkl −
1
4
|s|2δij − Eij ,

where Eij = Rij −R/4 δij is the Einstein tensor of M and |s|2 = sijksijk.
Let αijk = dsijk−sljkτ

l
i−silkτ

l
j−sijlτ

l
k and let αij = 1

2 (siklαjkl+sjklαikl);
note that αijk and αij are S3

0V - and S2
0V -valued 1-forms, respectively. Then

the 2-forms of I1 are

−dσ̃i
j ≡ αijk ∧ ωk + Likω

k ∧ ωj + Ljkω
k ∧ ωi

−dω̃i
0 ≡ 2(dLij − Lljτ

l
i − Lilτ

l
i ) ∧ ωj + 2σi

j ∧ Ljlω
l

≡ 4αij ∧ ωj − αkk ∧ ωi + 2Eijkω
j ∧ ωk + 2sijkLjlω

k ∧ ωl

 mod
1-forms,

(17)
where Eijk are components of the covariant derivatives of the Einstein tensor
with respect to the Levi-Civita connection on M .

We are now in a position to compute the characteristic variety of I1.

Proposition 3.1. Let E be an integral 3-plane of I1 satisfying the inde-
pendence condition (9). Then ΞC,E is defined, in the usual homogeneous
coordinates, by

ξ · ξ = 0,
∑
i,j,k

sijkξiξjξk = 0 (18)

and ∑
k,l

(ξisjkl − ξjsikl)ξkξl = 0 (19)

for all i and j.

Proof. Our computation depends only on the structure of I1 at the base-
point of E. Suppose αijk|E= tijklω

l; then define new S3
0V - and S2

0V -valued
1-forms α̃ijk = αijk − tijklω

l and α̃ij = 1
2 (siklα̃jkl + sjklα̃ikl) annihilating E.

The 2-forms of I1 in this basis are

α̃ijk ∧ ωk, 4α̃ij ∧ ωj − α̃kk ∧ ωi.

If ξ ∈ E∗, any integral 3-plane containing ξ⊥ and satisfying the independence
condition must be annihilated by the 1-forms of I1 and by

α̃ijkξl − α̃ijlξk, 4(α̃ijξk − α̃ikξj)− α̃ll(δijξk − δikξj).
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The way in which these annihilators are linear combinations of the anni-
hilators α̃ijk of E defines the symbol map σξ. In this case, σξ : S3

0V →
(S2

0V ⊗ Λ2V )⊕ (V ⊗ Λ2V ) is given by

σξ(aijk) = aijkξl − aijlξk ⊗ 4(bijξk − bikξj)− bll(δijξk − δikξj), (20)

where bij = 1
2 (siklajkl + sjklaikl). The hyperplane ξ⊥ is characteristic when

σξ fails to be injective.
Suppose aijk is in the kernel of σξ; then setting the first factor in (20) equal

to zero shows that aijk = λξiξjξk. (In order for this to be in S3
0V , we must

have ξ · ξ = 0. In general, the characteristic variety of the prolongation will
be contained, with appropriate identifications, in the original characteristic
variety; see [Br2], §V.3.) Thus, the kernel is at most one-dimensional. With
λ = 1, bij = 1

2 (ciξj + cjξi), where ci = siklξkξl. Then setting the other factor
of (20) equal to zero gives

2(ξiξkcj − ξiξjck)− ξlcl(δijξk − δikξj) = 0. (21)

Contraction with ξj , and using ξ · ξ = 0, gives ξiξkcjξj = 0 for all i and k.
This implies cjξj = 0, the second equation in (18). Now (21) becomes

ξi(ξjck − ξkcj) = 0

for all i, j, k. Since ξ 6= 0, this implies (19).�

Corollary 3.2. At points where the Pick form sijk 6= 0, ΞC,E consists of
the double points of the intersection of the curves ξ ·ξ = 0 and sijkξiξjξk = 0.

Proof. The homogeneous coordinates for the tangent line to ξ · ξ = 0 at the
point ξ are just [ξ1, ξ2, ξ3]. But (19) implies that the coordinates [c1, c2, c3]
of the tangent line to sijkξiξjξk = 0 at ξ are the same as [ξ1, ξ2, ξ3] up to
scalar multiple.�

Proof of Theorem 1. Let C ⊂ S3
0V be the open subset of nonzero cubics

whose intersection with the isotropic curve ξ · ξ = 0 has no double points.
Then the restriction of I1 to B × F × C has empty characteristic variety at
each point. Then by Thm. V.3.12 in [Br2], there is a suitable q such that
each connected integral manifold of I1 is determined by its q-jet at one point.
�

4. The tableau and its prolongations

The tableau of a linear Pfaffian system gives a pointwise, linear-algebraic
way of obtaining information about the space of solutions. If θ1, · · · , θs is a
basis for the 1-forms of the system, with independence condition ω1 ∧ · · · ∧
ωn 6= 0, and

dθa ≡ πa
i ∧ ωi mod θ1, · · · , θs
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then the tableau A is the subspace of Rs⊗Rn cut out by any linear relations
satisfied by the forms πa

i . If a certain number of the θ’s span the first derived
system, then the corresponding πa

i ’s may be taken to be zero.
Since the 1-forms of I0 are automatically in the first derived system of the

prolongation I1, and the remaining 1-forms are given by (16), the tableau of
I1 lies in W ⊗ V for W = S2

0V ⊕ V . Then (17) shows that the tableau is

A = {a⊕ ϕ(a) ∈ (S2
0V ⊗ V )⊕ (V ⊗ V )|a ∈ S3

0V },

where ϕ : S3
0V → S2V is the linear map defined component-wise by

bij = 2(siklajkl + sjklaikl)− sklmaklmδij .

By definition, the prolongations of the tableau are A(1) = A⊗V ∩W ⊗S2V ,
A(2) = A(1) ⊗ V ∩W ⊗ S3V , etc. In our case,

A(1) = {a′ ⊕ ϕ′(a′)|a′ ∈ S4
0V, ϕ

′(a′) ∈ S3V }

and
A(2) = {a′′ ⊕ ϕ′′(a′′)|a′′ ∈ S5

0V, ϕ
′′(a′′) ∈ S4V },

where ϕ′ = ϕ⊗ id and ϕ′′ = ϕ′ ⊗ id.
It is clear that A(2) is isomorphic to the subspace of S5

0V defined by the
equation bijkl − bikjl, where b = ϕ′′(a). Thus, A(2) is the kernel of a linear
map ψ : S5

0V → V ⊗ Λ2V ⊗ V ∼= V ⊗ V ⊗ V. We can write this map in
component form as

cilm = εmjk(2sipqajpqkl + 2sjpqaipqkl − spqrapqrklδij), (22)

where εmjk is the totally skew-symmetric permutation symbol. (Note that
the first contraction on the right is automatically zero.)

Suppose ψ(a′′) = 0. Then the contraction cilmεiln = 0 gives

spqrapqrnm = 0, (23)

and then by (22), εmjksjpqaipqkl = 0, or

sjpqakpqil − skpqajpqil = 0. (24)

Since this equation implies (23) by tracing on j and l, (24) is the defining
equation for A(2).

The left-hand side of (24) can be interpreted as a bilinear map Φ : S3
0V ⊗

S5
0V → Λ2V ⊗S2

0V
∼= V ⊗S2

0V which is SO(3)-equivariant. By the Clebsch-
Gordan formula,

S3
0V ⊗ S5

0V
∼= S2

0V ⊕ S3
0V ⊕ · · · ⊕ S8

0V
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as SO(3) modules, whilst V ⊗ S2
0V

∼= V ⊕ S2
0V ⊕ S3

0V . Thus the image
of Φ must be an SO(3) module in S2

0V ⊕ S3
0V . It is easy to verify that

compositions with the projections into S2
0V and S3

0V are not automatically
zero. So, our map Φ is essentially, up to normalizations, the sum of two
Clebsch-Gordan homomorphisms on S3

0V ⊗ S5
0V .

Proof of Theorem 2. Setting σ = sijkx
ixjxk and α = aijklmx

ixjxkxlxm

shows that Φ is precisely the map defined in (1). Hence when the Pick form
is SO(3)-generic, A(2) = 0. But for a linear Pfaffian system with tableau A,
the space of integral elements satisfying the independence condition has the
structure of an affine bundle with fibre isomorphic to A(1). In our case, A
is the tableau of I1, A(1) the tableau for I2, and A(2) = 0 implies that the
prolongation I2 has at most a unique integral element at each point.1

Just as the components sijk of the Pick form were added as new variables
to define I1, the components sijkl of the (symmetrized) covariant derivatives
are the only new variables added in defining I2. Hence, the value of the Pick
form σ and of ∇σ on M uniquely determine a point in the manifold on which
I2 is defined, and our genericity condition implies that there can be at most
a unique integral manifold of I2 through that point. �

5. Special Hypersurfaces in R4

For an involutive EDS, the value of the last nonzero Cartan character
sl determines the size of the space of integral manifolds. For example, if
sl = k, local integral manifolds can be constructed (using the Cartan-Kähler
theorem) by choosing k arbitrary functions of l variables. As well, the char-
acteristic variety will have dimension l − 1. Thus, if we hope that the affine
isometric embeddings of a given Riemannian manifold M depend on more
than just a choice of constants, we had better look among those hypersurfaces
for which the characteristic variety for the system I1 is non-empty.

As shown in §3, this means that, at every point of M , the Pick curve
must intersect the isotropic curve in double points. At any point of the
hypersurface, orthonormal frames can be chosen so that e1 ± ie2 are the
double points, in which case the components of the Pick form satisfy

s123 = 0
s113 = a, s223 = a, s333 = −2a
s122 = −b, s133 = 4b, s111 = −3b
s112 = −c, s233 = 4c, s222 = −3c

(25)

Moreover, if b2 + c2 6= 0—equivalently, if the double points never degenerate
to triple points—the frames may be chosen smoothly along M . This leads to

1Integral elements for I1 exist, for example, at each point where the Clebsch-Gordan

homomorphism S3
0V ⊗S4

0V → S2
0V , with the Pick form in the first slot, is surjective. Our

genericity assumption implies the latter condition, but does not guarantee that torsion is
absorbable at the level of I2.
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the first of the EDS’s we use in this section; for the second system, we will
assume b and c are identically zero.

Although our examples of nonrigidity, which arise as a subcase of b = c =
0, depend in fact only on a choice of constants, we feel that these nevertheless
illustrate the fundamental role of the Pick form—even when it is nonzero!—
in affine differential geometry, and the utility of the characteristic variety in
guiding the EDS machinery.

An affine orthonormal frame along a hypersurface in R4, with Pick form
as in (25), corresponds to an integral 3-fold of the Pfaffian system

J =



ω0
i − ωi

σ1
1 + 3bω1 + cω2 − aω3

σ2
2 + bω1 + 3cω2 − aω3

σ3
3 − 4bω1 − 4cω2 + 2aω3

σ1
2 + cω1 + bω2

σ1
3 − aω1 − 4bω3

σ2
3 − aω2 − 4cω3

(26)

on F × R3, where we add a, b, c as new variables. The 1-forms ω0
i − ωi,

i = 1, 2, 3, are closed modulo J ; these then span the first derived system of
J . The exterior derivatives of the remaining 1-forms are

(3β1 − ω1
0) ∧ ω1 + β2 ∧ ω2 − (5α1 + α0) ∧ ω3

β1 ∧ ω1 + (3β2 − ω2
0) ∧ ω2 + (5α1 − α0) ∧ ω3

−4β1 ∧ ω1 − 4β2 ∧ ω2 + (2α0 − ω3
0) ∧ ω3

(β2 − 1
2ω

2
0) ∧ ω1 + (β1 − 1

2ω
1
0) ∧ ω2 − 5α2 ∧ ω3

(−α0 − 5α1 − 1
2ω

3
0) ∧ ω1 − 5α2 ∧ ω2 + (−4β1 − 1

2ω
1
0) ∧ ω3

−5α2 ∧ ω1 + (−α0 − 5α1 − 1
2ω

3
0) ∧ ω2 + (−4β2 − 1

2ω
2
0) ∧ ω3,

(27)

where we have defined

α0 := da+ 6(bτ1
3 + cτ2

3 )

α1 := bτ1
3 − cτ2

3

α2 := cτ1
3 + bτ2

3

β1 := db+ cτ1
2 − aτ1

3

β2 := dc− bτ1
2 − aτ2

3

Let J0 be the differential ideal generated by J . For an integral 3-plane
E of this system, satisfying ω1 ∧ ω2 ∧ ω3|E 6= 0, the characteristic variety
consists of the single point ξ = ω3. The Cartan characters of J0 are s1 = 6,
s2 = 2, s3 = 0, but the space of integral elements at each point has dimension
9 < s1 + 2s2 + 3s3 (see next paragraph). The system fails to be involutive.
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We may define the prolongation J1 by introducing the 9 variables Lij =
Lji and e, f, g, and defining the 1-forms

θi := Lijω
j − 1

2
ωi

0

ᾱ0 := α0 + (L13 + 10e)ω1 + (L23 + 10g)ω2 + (L33 − 4f +
3
2
(L11 + L22))ω3

ᾱ1 := α1 + eω1 − gω2 +
1
2
(L22 − L11)ω3

ᾱ2 := α2 + gω1 + eω2 − L12ω
3

β̄1 := β1 + (L22 − f)ω1 − L12ω
2 − (5e+ L13)ω3

β̄2 := β2 + (L11 − f)ω2 − L12ω
1 − (5g + L23)ω3.

Since only six 1-forms in J remain after we exclude the first derived system,
the tableau A of J0 is contained in W ⊗ V where dimW = 6. Since s1 =
dimW , it follows that, in the sequence of linear maps

A(2) ↪→ A(1) ⊗ V −→ A⊗ Λ2V −→W ⊗ Λ3V,

the rightmost map surjects. (Note that the sequence is exact at the second
term, by the definition of A(2).) Since dimA = 8—corresponding the the
forms ω1

0 , ω
2
0 , ω

3
0 and α0, α1, α2, β1, β2—and dimA(1) = 9—corresponding to

the parameters Lij and e, f, g—and dimA(2) = 9, this sequence is also exact
at the third term. It follows that, since the torsion of J1 lies in the kernel of
the rightmost map, that torsion is always absorbable by a change of coframe.
That is, there will be forms DLij = dLij + · · · , De = de + · · · , etc., such
that the prolongation 2-forms are

DLij ∧ ωj

10De ∧ ω1 + 10Dg ∧ ω2 − (4Df + 3
2 (DL11 +DL22)) ∧ ω3

De ∧ ω1 −Dg ∧ ω2 + 1
2 (DL22 −DL11) ∧ ω3

Dg ∧ ω1 +De ∧ ω2 −DL12 ∧ ω3

(DL11 +DL22 −Df) ∧ ω1 − 5De ∧ ω3

(DL11 +DL22 −Df) ∧ ω2 − 5Dg ∧ ω3.

(28)

(We have subtracted some multiples of the forms DLij ∧ ωj from the others
in order to simplify the tableau.)

If we test J1 for involutivity, we find that s1 = 8, s2 = 1, s3 = 0; and since
dimA(2) = 9 < s1 + 2s2 + 3s3, the test fails again. On the other hand, the
fact that dimA(3) = 9 indicates, by cohomological considerations discussed
in the appendix, that there are 2-forms outside the ideal J1 but which vanish
on all integral 3-planes. In fact, it is clear from the last two rows of (28) that
φ := Df −DL11−DL22 must be a multiple of ω3. When we add the 2-form
φ∧ω3 to the ideal, s1 = 9, s2 = 0 and s3 = 0. The system is now involutive.
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Thus, special hypersurfaces of the type with b2 + c2 6= 0 depend locally on a
choice of nine arbitrary functions of one variable.

For hypersurfaces whose Pick curve always intersects the isotropic curve in
triple points, we use a Pfaffian system J̃ on F ×R, whose forms are the same
as (26),(27), except with b = c = 0. (We also assume a 6= 0.) The Cartan
characters of J̃0 are s1 = 4, s2 = 2, s3 = 0, and dim Ã(1) = 5 < s1+2s2+3s3.

The forms for the first prolongation J̃1 are

θi := Lijω
j − 1

2
ωi

0 (but with L12 = 0 and L22 = L11)

ᾱ0 := da+ L13ω
1 + L23ω

2 + (L33 − L11 − 4F )ω3

β̄1 := −aτ1
3 − Fω1 − L13ω

3

β̄2 := −aτ2
3 − Fω2 − L23ω

3.

(Here, we have changed to F = f − L11 = f − L22.) The Cartan characters
for J̃1 are s1 = 4, s2 = 1, s3 = 0, while dim Ã(2) = 4; the system again
fails to be involutive. However, by cohomological methods discussed in the
appendix, we may detect that there is a 1-form not in J̃1 but which vanishes
on all integral elements. In fact,

d(θ1 + β̄1) ≡ (dL11 − dF − 2aL23ω
2 +

3a4 + 5F 2 − 2a2L33

a
ω3) ∧ ω1

d(θ2 + β̄2) ≡ (dL11 − dF − 2aL13ω
1 +

3a4 + 5F 2 − 2a2L33

a
ω3) ∧ ω2

mod 1-forms

shows that the missing 1-form is

dL11 − dF − 2aL13ω
1 − 2aL23ω

2 +
3a4 + 5F 2 − 2a2L33

a
ω3.

Once this 1-form is added to the system, the characters become s1 = 4,
s2 = 0, s3 = 0, and the new system is involutive. Thus, special hypersurfaces
with b = c = 0 depend locally on a choice of four functions of one variable.

If we wish to show that in some cases there are essentially different affine
isometric embeddings for a given metric, we have to start with the metric
itself, and show that the embedding problem has more than one solution.
Unfortunately, the preceding analysis of special hypersurfaces does not give
us much intrinsic information about the metrics themselves. However, if we
introduce the “ansatz”

L13 = L23 = 0, (29)

the equations for the b = c = 0 hypersurfaces become much simpler. Namely,

along these hypersurfaces τ1
3 = −F

a
ω1 and τ2

3 = −F
a
ω2, and so

dω3 = −τ3
1 ∧ ω1 − τ3

2 ∧ ω2 = 0.
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This means the 2-planes spanned by e1, e2 are tangent to a foliation of M .
The metric restricts to the leaves to be (ω1)2 + (ω2)2, and the Lie derivative

Le3

(
(ω1)2 + (ω2)2

)
= −F

a

(
(ω1)2 + (ω2)2

)
shows that the restriction of the metric changes only by a conformal factor
as one moves perpendicularly to the leaves. When we substitute (29) into
the 1-forms of J̃1, we find that on an integral manifold, da and d(L11 − F )
must be multiples of ω3—i.e., a and L11 − F are constant along the leaves.
As well, substituting (29) into the 2-form

d(ᾱ0 − θ3) ≡ −5
(
dF +

a2 + F

a
(L13ω

1 + L23ω
2)
)
∧ ω3

shows that F is also constant along the leaves. Lastly,

dτ1
2 =

(
F 2

a2
− 2L11 − a2

)
ω1 ∧ ω2

shows that the curvature of the metric along the leaves is constant on each
leaf. Hence our metric on M is a warped product, over a one-dimensional
base, of constant curvature surfaces.

We may ask now, if every such warped product has an affine isometric
embedding of this type. To answer this, we will specialize the isometric
embedding system I0 to the case where the Riemannian manifold M is of
this type.

Suppose the metric on M is dt2 + f(t)2ds2, where ds2 is a metric of
constant Gauss curvature K0 on a surface. Suppose θ1, θ2 is an orthonormal
coframing along the surface, with connection form ρ and the usual structure
equations

dθ1 = −ρ ∧ θ2, dθ2 = ρ ∧ θ2, dρ = K0θ
1 ∧ θ2.

Then η1 = f(t)θ1, η2 = f(t)θ2, η3 = dt forms an orthonormal coframing
along M , with connection forms η1

2 = ρ, η1
3 = f ′(t)θ1, η2

3 = f ′(t)θ2.
In addition to specializing the metric on M , we will also require the Pick

form to have the special form (25) with b = c = 0. Adjoining a as a new
variable, our EDS will be defined on M×F×R, and generated by the 1-forms

ω0, ω0
i − ωi

ω1 − f(t)θ1, ω2 − f(t)θ2, ω3 − dt
σ1

1 − aω3, σ2
2 − aω3, σ3

3 + 2aω3

σ1
2 , σ

1
3 − aω1, σ2

3 − aω2

τ1
2 − ρ, τ1

3 − f ′(t)θ1, τ2
3 − f ′(t)θ2
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The 2-forms of this system are

d(aω3 − σ1
1) ≡ da ∧ ω3 + ω1

0 ∧ ω1

d(aω3 − σ2
2) ≡ da ∧ ω3 + ω2

0 ∧ ω2

d(σ3
3 + 2aω3) ≡ 2da ∧ ω3 − ω3

0 ∧ ω3

d(−2σ1
2) ≡ ω1

0 ∧ ω2 + ω2
0 ∧ ω1

d(aω1 − σ1
3) ≡ da ∧ ω1 − 4a

f ′

f
ω1 ∧ ω3 +

1
2
(ω1

0 ∧ ω3 + ω3
0 ∧ ω1)

d(aω2 − σ2
3) ≡ da ∧ ω2 − 4a

f ′

f
ω2 ∧ ω3 +

1
2
(ω2

0 ∧ ω3 + ω3
0 ∧ ω2)

d(τ1
2 − ρ) ≡

((
f ′

f

)2

− a2 − K0

f2

)
ω1 ∧ ω2 − 1

2
ω1

0 ∧ ω2 +
1
2
ω2

0 ∧ ω1

d(τ1
3 − f ′θ1) ≡

(
f ′′

f
+ 3a2

)
ω1 ∧ ω3 − 1

2
ω1

0 ∧ ω3 +
1
2
ω3

0 ∧ ω1

d(τ2
3 − f ′θ2) ≡

(
f ′′

f
+ 3a2

)
ω2 ∧ ω3 − 1

2
ω2

0 ∧ ω3 +
1
2
ω3

0 ∧ ω2.

(30)
The vanishing of the first pair of forms in (30) implies that da∧ω3 = 0; this
is another “missing form” we should add to the system. We replace the first
three forms in (30) with

da ∧ ω3, ω1
0 ∧ ω1, ω2

0 ∧ ω2, ω3
0 ∧ ω3.

When these vanish on an integral 3-plane which satisfies the independence
condition (9),

ω1
0 = 2L11ω

1, ω2
0 = 2L22ω

2, ω3
0 = 2L33ω

3

for some L11, L22, L33. Substituting these values in the middle three forms
in (30) shows that L11 = L22, and forces

da = (L11 − L33 − 4a
f ′

f
)ω3. (31)

Finally, substituting into the last three forms in (30) shows that

2L11 =
(
f ′

f

)2

− a2 − K0

f2

and

L33 = 3a2 +
f ′′

f
− L11.
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Since L11 and L33 are completely determined, there is a unique integral 3-
plane at each point of M ×F × R. It is easy to verify that this distribution
satisfies the Frobenius condition.

When we substitute the values for L11 and L33 into (31), we find that a
satisfies a Riccati equation:

da

dt
= −4a2 − 4a(log f)′ − (log f)′′ − K0

f(t)2
. (32)

Recall that, once the nonzero component a of the Pick form is specified, the
affine isometric embedding of M into R4 is determined up to affine motion.
However, choosing different initial values for a in the ODE (32) will generate
different Pick forms, and hence generate local solutions to the affine isometric
problem that are not equivalent under affine motion.

It is not difficult to write down choices of f(t) and K0 for which (32) has
solutions defined for all t ∈ R. However, (32) also has solutions that give
affine isometric embeddings for a compact M3. Specifically, take K0 = 1,
and suppose f(t) is positive on (0, π) and zero at the endpoints. In order
for the metric to be smooth at the endpoints, f ′(0) = 1, f ′(π) = −1, and f
must be a C∞ odd function of t and of t− π. The example we will use is

f(t) = sin(t)
(
1 + (α cos t+ β) sin2 t

)
, (33)

where we assume (α, β) lies strictly above the parametrized curve α =
− cos t/ sin4 t, β = (2 cos2 t− sin2 t)/ sin4 t to get the second factor in (33) to
be positive.

In order for the Pick form a dt(2dt2 − 3((ω1)2 + (ω2)2)) to extend to be a
smooth cubic form at the endpoints, a(t) must also be a C∞ odd function
of t and t− π. Because f is odd, this is automatic provided a(t) is bounded
near the singular points t = 0 and t = π. With our choice of f , the only
singular term in the right-hand side of (32) is −4a(log f)′; in fact the term
−(log f)′′ − 1/f2 vanishes to first order at the endpoints. For t ∈ (0, π), the
solution curves for (32) will be the same as those of the system

dt/dτ = f(t)

da/dτ = −4a2f(t)− 4af ′(t)− f ′′(t) +
f ′(t)2 − 1
f(t)

.

This has saddle points at a = 0 and t = 0 or π. The unstable manifold of the
first point and the stable manifold of the second point represent solutions to
(32) that are bounded near t = 0 and near t = π respectively. Sometimes
these are one and the same curve; e.g. for α = 0 and β = 0, a(t) = 0 is
the only bounded solution, giving the isometric embedding of the standard
metric on S3 as a quadric in R4. However, this is not the only choice of (α, β)
for which there exists a bounded solution to (32) on [0, π].
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When α = 0 and β = −.1, the term −(log f)′′ − 1/f2 is strictly negative
for t ∈ (0, π). This implies that the solution that is bounded near t = 0 tends
to −∞ as t↗ π, and the solution that is bounded near t = π tends to +∞
as t↘ 0. Likewise, when α = 0 and β = 1, or when α = ±1 and β = 2, this
term is strictly positive, and the behaviour of the two solutions is reversed. If
we connect the first pair of parameter values to either of the other two pairs
by a continuous curve within the set of admissable values, then there must
be some point along the curve for which the two solutions coincide, and (32)
has a bounded, smooth solution on [0, π] which can be extended to a smooth
function with the required symmetries.

Appendix: Saturation of linear Pfaffian systems

For the case of linear Pfaffian systems, we will derive certain results that
relate the phenomenon of “missing” forms—that is, differential forms not
contained in an EDS, but which vanish on all integral elements of that
system—to the dimensions of the tableaux of the system. Formally, a Pfaf-
fian system on M is a sub-bundle I ⊂ T ∗M , with a local basis θ1, · · · , θs for
sections. Adding an independence condition—like ω1 ∧ · · · ∧ ωn 6= 0 on inte-
gral n-manifolds—amounts to giving a pair of bundles I ⊂ J ⊂ T ∗M with
rank J/I = n. (For these and other bundles we consider, we will assume
constant rank.)

At points of M where there exist integral n-planes satisfying the indepen-
dence condition, we can assume there are structure equations

dθa ≡ πa
i ∧ ωi mod θ1, · · · , θs.

The forms πa
i are not necessarily independent. If their linear dependencies

at x ∈M are Bρi
a (x)πa

i ≡ 0 mod θ′s, 1 ≤ ρ ≤ r, then the tableau at x is the
space A ⊂ (J/I)x⊗ I∗x defined by Bρi

a (x)(vi⊗wa) = 0. (We will use W = I∗x
and V = (J/I)x.)

For the differential ideal I generated by I, the θ1, · · · , θs and the 2-forms
πa

i ∧ωi are algebraic generators. We are interested in the additional 1-forms
and 2-forms which are linear in the πa

i ’s and vanish on all integral n-planes
satisfying the independence condition. Any such n-plane E has

θa|E = 0

πa
i |E = pa

ijω
j

with Bρi
a p

a
ij = 0 and pa

ij = pa
ji—that is, pa

ij are the components of an element
of A(1) ⊂W ⊗ S2V .

The space of missing 1-forms is

{π = ciaπ
a
i | ciapa

ij = 0,∀(pa
ij) ∈ A(1)}
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modulo A. Hence it is the kernel of the natural map

A∗
η−→ (A(1))∗ ⊗ V.

The dual of this space is isomorphic to the cokernel of the contraction map

A(1) ⊗ V ∗ → A.

However, the dimension of the image here is, by definition, the contraction
rank of A(1). So, we have

Lemma 1. The space of missing 1-forms has dimension dimA− rk(A(1)).

The space of all 2-forms which are linear in the πa
i ’s and vanish on the

integral elements is

{Ω = ciakπ
a
i ∧ ωk | ciakp

a
ijω

j ∧ ωk = 0,∀(pa
ij) ∈ A(1)}.

This space is the kernel of the composition

A∗ ⊗ V
η⊗id−→ (A(1))∗ ⊗ V ⊗ V

wedge−→ (A(1))∗ ⊗ Λ2V. (34)

We wish to ‘mod out’ by the 2-forms πa
i ∧ωi, which correspond to ciak = caδ

i
k,

i.e., the image of

W ∗ ⊗id−→W ∗ ⊗ V ∗ ⊗ V
restrict−→ A∗ ⊗ V. (35)

Taking the duals of (34) and (35) gives a sequence of maps

A(1) ⊗ Λ2V ∗
contract−→ A⊗ V ∗

contract−→ W. (36)

Note that the image of the first map is in the kernel of the second. The
dual of the space of missing 2-forms is isomorphic to the cohomology at the
middle term.

When dimV = 3, picking a volume form on V gives isomorphisms Λ3V ∗ ∼=
R and Λ2V ∗ ∼= V , and the first map in (36) can be replaced by

A(1) ⊗ V ↪→ A⊗ V ⊗ V
wedge−→ A⊗ Λ2V.

By definition, the kernel of this map is A(2). On the other hand, the image
of the second map in (36) has dimension rk(A). Putting these two facts
together gives

Lemma 2. When n = 3, the space of missing 2-forms has dimension

3 dimA− rk(A)− (3 dimA(1) − dimA(2)).
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