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Abstract A strictly convex hypersurface in Rn can be endowed with a Rie-

mannian metric in a way that is invariant under the group of (equi)affine mo-
tions. We study the corresponding isometric embedding problem for surfaces

in R3. This problem is formulated in terms of a quasilinear elliptic system of

PDE for the Pick form. A negative result is obtained by attempting to invert
about the standard embedding of the round sphere as an ellipsoid.

1. Introduction

A strictly convex hypersurface Mn in Rn+1 can be given a Riemannian
metric in a way that is invariant under affine motions, i.e., the action of
SL(n + 1) and translations. Essentially, if f is the position in Rn+1 as a
function of local coordinates on M , let

hij = det
(

∂f

∂x1
, · · · ,

∂f

∂xn
,

∂2f

∂xi∂xj

)
. (1)

Because of convexity, the coordinates can be chosen so that hij is positive
definite; then the metric is

gij =
hij

(deth)1/(n+2)

(see [B]). Alternatively, given a transverse vector field N along the hypersur-
face, define a connection ∇, for vector fields X and Y along M , by splitting
the ordinary derivative

DXY = g(X, Y )N +∇XY

into transverse and tangential parts. By wedge product with N , the invariant
volume form on the ambient space gives a volume form Ω on M . Then N
is the unique affine normal, and g is the affine metric, if Ω is parallel with
respect to ∇ and coincides with the volume form of g (see [No]).
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Note that ∇ is not necessarily the Levi-Civita connection ∇̂ belonging
to g. In fact, the next affine invariant for hypersurfaces is the Pick tensor,
defined as the difference ∇ − ∇̂. When this (2, 1) tensor is lowered using
g, the result is the Pick form, a cubic form on TM , with components Aijk

satisfying

Aijk = −2∇kgij , Aijk = Ajki = Akij , gijAijk = 0.

The famous Pick-Berwald theorem [B] says that M is a quadric hypersurface
if and only if the Pick form vanishes identically.

The third affine invariant we will need is the shape operator associated to
the affine normal N . One can show that the shape operator S(X) = −∇XN
is a endomorphism of TM and that

Bij = gikSk
j

is symmetric; B is sometimes known as the affine second fundamental form.
The tensors g,A, B satisfy analogues of the Gauss and Codazzi equations

(cf. [S]).

Proposition 1 (Gauss equations). If g is the affine-invariant metric on
a convex surface in R3, then the Gauss curvature of g satisfies

K = (|A|2 + gijBij)/2. (2)

Proposition 2 (Codazzi equations). Under covariant differentiation us-
ing the Levi-Civita connection of g,

Bij,k −Bik,j = Am
ij Bkm −Am

ikBjm (3)

Aijk,l −Aijl,k = 1
2 (gikBjl − gilBjk + gjkBil − gjlBik). (4)

Note that the Codazzi equations have the same form in higher dimensions.

In this article we will discuss the affine isometric embedding problem for
surfaces:1 that is, given a Riemannian metric g on a surface M , is there
an immersion f : M → R3, with strictly convex image, such that the affine
invariant metric on the image coincides with g? It is well-known that the
constant curvature surfaces can be isometrically embedded as quadric sur-
faces. (For example, any ellipsoid enclosing a volume 4π/3 gets an affine
invariant metric of constant curvature 1.) However, it is not known if there
is any other way to embed these surfaces.

From a naive point of view, we are asking for the three components of f to
satisfy a system of three second-order PDEs (1), and in this sense the problem
is determined. At another level, we are asking for symmetric tensors A, B
satisfying the Gauss and Codazzi equations. For, the fundamental theorem
in affine surface theory then gives a local embedding into R3:

1In [M], a claim to having solved the affine isometric embedding problem for surfaces
is incorrectly attributed to the present author.
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Radon’s Theorem. ([B], [S]) Let (M, g) be a smooth Riemannian surface,
and let A, B be symmetric cubic and quadratic forms on M , such that A is
traceless with respect to g, and A and B satisfy the above Gauss and Codazzi
equations. Then given any point p ∈ M , there exists an isometric embedding
f defined on a neighbourhood of p, which is unique up to affine motions.

If M is simply connected, then f extends to all of M . Furthermore, if
M is compact and oriented, then M is S2 and the fact that f has a convex
image implies that f is an embedding.

For the rest of this article, we will concentrate on embeddings of S2 into
R3. Again, it is not known if there is any way of embedding the round
sphere in any way except as an ellipsoid. It is also not known what other
metrics on S2 admit an affine isometric embedding. In this connexion, we
obtain a noninvertibility result, which says that there are metrics arbitrarily
close to the standard metric on S2 which do not possess an affine isometric
embedding near the ellipsoid.

2. Ellipticity

We will show here that the compatibility conditions for A and B can be
reformulated as a second-order, elliptic system for the components of A. It is
necessary to work at the level of the Pick form, because the original isometric
embedding condition (1) fails to be elliptic. To see this, it is enough to work
on the equation

hij =
{

∂f

∂x1
,

∂f

∂x2
,

∂2fγ

∂xi∂xj

}
,

since g can be recovered from h and vice-versa. (Here, the braces denote the
scalar triple product.) Linearization of the right-hand side at an embedding
f gives the following linear operator:

L(f̃)ij =

{
∂f

∂x1
,

∂f

∂x2
,

∂2f̃

∂xi∂xj

}
+

{
∂f̃

∂x1
,

∂f

∂x2
,

∂2f

∂xi∂xj

}
+

{
∂f

∂x1
,

∂f̃

∂x2
,

∂2f

∂xi∂xj

}
.

The symbol mapping associated to the top-order part of L is

σξ(f̃)ij = ξiξj

{
∂fα

∂x1
,
∂fβ

∂x2
, f̃

}
,

which clearly has rank one for any covector ξ. In fact, since the first-order
part of L, when restricted to the kernel of σξ, also has rank one, L is not
even elliptic in the generalized sense of Douglis-Nirenberg [D-N].

Suppose (M, g) is an oriented Riemannian surface. We will use the com-
plex structure on M to express the Codazzi equations in a more compact
form. Let η1, η2 be a local orthonormal coframing such that ω = η1 + iη2
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is a (1, 0)-form. If Ajkl are the components of a traceless cubic form with
respect to this coframing, then

Ajklη
jηkηl = Re(A111 + iA222)ω3. (5)

Let T denote the line bundle which is the (1, 0) part of TM ⊗ C, let T −1

denote the (0, 1) part, and let T n denote the tensor powers of these bundles.
Then ω is a local section of T , and (5) says that we can regard the Pick form
as the real part of a section of T 3.

The bundle T and its tensor powers are all holomorphic line bundles with
hermitian metrics defined by g. We will reformulate the Codazzi equations
in terms of the canonical connections on these bundles. As in [Br], we split
each covariant differentiation operator into its (1, 0) and (0, 1) pieces:

∂ : C∞(T m) → C∞(T m ⊗ T ), ∂̄ : C∞(T m) → C∞(T m ⊗ T −1).

We can use the canonical pairing ωm · ω̄n = ωm−n to get

∂ : C∞(T m) → C∞(T m+1), ∂̄ : C∞(T m) → C∞(T m−1).

Note that while ∂ + ∂̄ is the usual splitting of the exterior derivative on
functions, ∂ ◦ ∂ 6= 0 in general. If σ ∈ C∞(T m) is expressed locally as sωm,
then we calculate ∂ and ∂̄ as follows: if ρ is a real-valued connection form
satisfying dω = iρ ∧ ω, let

ds + imsρ = s′ω + s′′ω̄; (6)

then s′ωm+1 and s′′ωm−1, where we interpret negative powers of ω as ω̄’s,
give ∂σ and ∂̄σ respectively.

Let α = (A111 + iA222)ω3 be the complexified Pick form. Then the Gauss
equation implies that tr(S) = 2K − 4|α|2. Since the traceless part of a
quadratic form is the real part of a (2, 0) form on M , we will let

Bjkηjηk = (K − 2|α|2)g − Re(β)

for a section β of T 2. Then the Codazzi equation (4) implies that

∂̄α = 1
2β.

In other words, g and α determine the affine second fundamental form.
Furthermore, the Codazzi equation (3) implies that

∂̄β = 2αβ̄ + 2ᾱ∂α− ∂K.

(The right-hand side gives a section of T once we use the canonical pairing.)
Substituting for β in the last equation gives the following second order system
of PDE for α:

∂̄2α = ᾱ∂α + 2α∂ᾱ− 1
2∂K. (7)

If we choose conformal coordinates so that ω = dz at a point, then ∂̄ = ∂/∂z̄
plus lower-order terms. It follows that (7) is an elliptic system of PDE.

Now we have a new version of Radon’s Theorem:
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Theorem. Let (M, g) be an oriented Riemannian surface, and let α be a
smooth section of T 3 satisfying (7). Then α is the Pick form for a local affine
isometric embedding of M into R3, which is unique up to affine motions.

Remarks 1. If K is constant, (7) becomes

∂̄2α = ᾱ∂α + 2α∂ᾱ, (8)

with the solution α ≡ 0 giving the embedding as a quadric surface. The ques-
tion of whether the constant curvature metric on S2 admits any other affine
isometric embedding amounts to asking whether (8) admits any nontrivial
solution.

2. When the isometric embedding problem is phrased in terms of finding
tensors A,B satisfying (2),(3),(4), one may ask if these equations are even
locally solvable: if not, perhaps there is a compatibility condition to be
satisfied by g and its local Riemannian invariants. However, our rewriting
these equations as a determined elliptic system of PDE shows that local
solutions exist for any metric. (In fact, by applying the Cartan- Kähler
theorem, we find that local solutions depend on an arbitrary choice of four
functions of one variable.) Naturally, compatibility conditions come into
play in higher dimensions; in an earlier paper [I], the author investigated
local solvability for n = 3, showing that, generically, solutions are completely
determined by the values of A and ∇A at one point.

3. Even when the equations are locally solvable, in higher dimensions charac-
teristic classes give obstructions to globally realizing a metric from an affine
embedding [BBG]. (I am indebted to the referee for this remark.)

3. Linearization

We will attempt to solve (7) by linearizing about the solution α ≡ 0 for
the standard metric g0 of constant curvature +1 on the sphere. From now
on, M will be S2. Since every other metric on M is conformally equivalent
to g0, we will let

g = e2fg0

be an arbitrary metric on M , and we will rewrite (7) in terms of f and the
covariant derivative operators associated to the background metric g0.

Proposition. Let ∂0, ∂̄0 be the operators associated to g0, and ∂, ∂̄ those
associated to g. Then (7) is equivalent to

∂̄2
0α− 2α∂0ᾱ− ᾱ(∂0α− 6α∂f) + 1

2∂0K = 0, (9)

where K is the Gauss curvature of g, given by

K = e−2f (1− 2∆f), ∆ = ∂∂̄ + ∂̄∂.
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(Note that ∂, ∂̄, and ∆ and the same as the corresponding operators for g0

on functions.)

Sketch. Let ω0 be a local (1, 0) form such that g0 = ω0ω̄0. Then ω = efω0 is
the corresponding form for g, and the connection forms are related by

ρ = ρ0 + i(∂f − ∂̄f).

Using (6), we now calculate that for a section σ of T m, provided m > 0,

∂σ = ∂0σ − 2mσ∂f

∂̄σ = ∂̄0σ.

The recast equation (9) now follows easily.�

We will regard the left-hand side of (9) as a nonlinear differential operator
on sections of T 3. We can separate it into its linear and nonlinear parts:

P (α)−R(α, f) = 0, (10)

where P = ∂̄2
0 . We will extend these operators to the appropriate function

spaces:
P : X → Z, R : X × Y → Z

where X = H2
2 (T 3) (i.e. sections of T 3 whose second derivatives are in L2),

Y is the Hölder space C3,δ for some δ > 0, and Z = L2(T ).
In this setting, we might hope to employ an implicit function theorem to

solve (10) for α as a function of f . This is not immediately feasable because
P is not invertible:

Proposition. The operator P has kernel zero, but its cokernel inside Z is
nonzero, of complex dimension eight.

Proof. P is an elliptic operator, and its adjoint P ∗ : Z → X is given by ∂2
0 ,

which is also elliptic. For each of these, the kernel will be finite-dimensional
and smooth. In order to calculate the kernels, we need to calculate the kernel
of ∂̄0 on C∞(T m) for m both positive and negative.

Let z be the usual coordinate on S2 qua the Riemann sphere. Then
ω0 = 2dz/(1 + zz̄). Let σ = s(ω0)m. Then ∂̄0σ = 0 if

ds + imsρ0 ≡ 0 mod dz. (11)

Using

ρ0 = i
zdz̄ − z̄dz

1 + zz̄
,

we see that (11) is equivalent to s̃ = (1+zz̄)−ms being a holomorphic function
on C.
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If σ extends to all of S2, then |s| must be bounded. If m > 0, then ∂̄0σ = 0
implies that s̃ is zero at z = ∞, and so σ = 0. It follows that the kernel of P
is zero. Furthermore, since ∂̄0 is the adjoint of the elliptic operator ∂0, then
∂0 : C∞(T ) → C∞(T 2) must be surjective.

If m < 0, then s̃ can have at most a pole of order |2m| at z = ∞. So,
∂̄0σ = 0 implies that s̃ = p(z) for some polynomial p of degree at most |2m|
in z. By complex conjugation, it follows that the kernels of ∂0 on C∞(T )
and C∞(T 2) have complex dimension three and five, respectively. Because
of the surjectivity of ∂0, the kernel of P ∗ is isomorphic to the direct sum of
these two kernels. �

When the linear part of (10) is noninvertible, but has zero kernel, we may
still obtain a candidate solution by projecting into range(P ), inverting, and
then obtaining necessary conditions on f . (Nirenberg refers to this method
as “bifurcation” [Ni]). To this end, recall that Z splits as an orthogonal
direct sum

Z = range(P )⊕ ker(P ∗),

and let E : Z → range(P ) be the projection. There exists a continuous left
inverse Q : range(P ) → X for P , and applying E followed by Q to (10) gives

α + Q ◦ E ◦R(α, f) = 0 (12)

Theorem. There exist neighbourhoods V and U of the origin in X and Y
respectively, and a continuous map J : U → V such that α = J(f) is the
unique solution of (12) in V for all f ∈ U .

Proof. In order to apply the implicit function theorem (see [Ni], Ch. VII),
we need only verify that R is continuous in α and f , and that R is actually
of higher order in α. To check this, calculate

R(α1, f)−R(α2, f) = 2(α1∂0ᾱ1−α2∂0ᾱ2)+ᾱ1∂0α1−ᾱ2∂0α2−6(|α1|2−|α2|2)∂f.

Now suppose |α1|, |α2|, |f | < ε. By interpolating terms, it is easy to see that

|R(α1, f)−R(α2, f)| = O(ε)|α1 − α2|.

The existence of the map J now follows by the implicit function theorem. �

Now let E′ : Z → ker(L∗) be the other projection. In order for α = J(f)
to be a solution of (10), we must have

E′ ◦R(J(f), f) = 0.

However, linearizing this equation at f = 0 shows that it is not identically
satisfied on U .
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Proposition. Let S(f) = R(J(f), f) for f ∈ U , and let dS be the lineariza-
tion of S at f = 0. Then E′ ◦ dS 6= 0.

Proof. The linearization of R at (0, 0) ∈ X × Y involves only the Gauss
curvature term in (9), and is given by

dR(f̃) = ∂0(f̃ + ∆f̃).

Then E′◦dS(f̃) = E′∂0(f̃+∆f̃). To show that this is not zero, we must show
that ∂0(f̃ + ∆f̃) has a nonzero projection into kerP ∗ for some f̃ . Suppose
f̃ is a λ-eigenfunction for ∆. Taking the L2 inner product with θ ∈ C∞(T )
gives ∫

M

< θ, ∂0(f̃ + ∆f̃) > dvolg0 =
λ + 1

2i

∫
M

θ̄ ∧ ∂0f̃ .

The eigenspaces of ∆ are irreducible SO(3)-modules of dimensions 1, 3, 5, 7 . . . ,
obtained by restricting harmonic polynomials on R3 of degrees 0, 1, 2, 3 . . .
to S2. On the other hand, kerP ∗ is the direct sum of two complex vector
spaces which are, in fact, irreducible complex SO(3)-modules of dimensions
three and five. When θ is in one of these modules, the above inner product
gives an equivariant map from an eigenspace into the dual of the module.
By Schur’s Lemma, this map is either zero or an isomorphism.

Suppose, for example, f̃ is the restriction to S2 of the linear function
ax1 + bx2 + cx3 on R3. Using stereographic projection,

f̃ =
2Re((a− ib)z − c)

1 + zz̄
+ c,

and it is easy to check that f̃ is an eigenfunction for λ = −4. Then

∂0f̃ =
a− ib + 2cz̄ − (a + ib)z̄2

1 + zz̄
ω0.

In the proof of the previous proposition, we’ve explained how to write down a
(1, 0)-form θ in the kernel of ∂0, in terms of an arbitrary second degree poly-
nomial in z̄. With the obvious choice, the inner product with the above ∂0f̃
is nonzero. Similarly, one can verify that the inner product using functions
in the five-dimensional eigenspace (λ = −12) with the appropriate forms θ
is nonzero. �

Corollary. Given any neighbourhood Ũ of the origin in C∞(S2), there exist
functions f ∈ Ũ ∩ U with no solution to (10) in V . In other words, the
corresponding metrics g = e2fg0 do not have affine isometric embeddings
near the ellipsoid.
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