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Abstract. The sine-Gordon equation with periodic boundary conditions describes integrable dynamics
on the space of closed curves of constant torsion, for which multi-phase solutions provide large classes of
canonical knot representatives. In this letter we discuss the use of Bäcklund transformations for studying

the topological properties and symmetries of multi-phase solutions and of their homoclinic manifolds.

1. Introduction

In a series of studies of the geometry of the periodic sine-Gordon equation

ust = sinu,

N. Ercolani, G. Forest and D. McLaughlin [5, 6] describe the structure of the class of multi-phase solutions

and their associated hyperbolic invariant manifolds. The main tools used are: the Floquet theory [10] for

the spatial part of the associated Lax Pair

dψ

ds
=
1
2

(
λ us

−us −λ

)
ψ,

dψ

dt
=

1
2λ

(
cosu − sinu
− sinu − cosu

)
ψ, (1)

in terms of which both an implicit representation of the isospectral set of a given N-phase solution and its

linear stability type can be obtained; and, Bäcklund transformations (built from solutions of (1)) which,

when iterated, give an explicit representation of both the isospectral set and its homoclinic manifold.

On the other hand, the sine-Gordon equation and its Bäcklund transformation are well-known to differ-

ential geometers. Solutions of the sine-Gordon equation are in one-to-one correspondence with surfaces of

constant negative Gaussian curvature (i.e., pseudospherical surfaces), and the Bäcklund transformation can

be interpreted geometrically as a line congruence [4] connecting a given pseudospherical surface to a new

one. The geometrical applications of the sine-Gordon equation also extend to space curves: if Ψ(s;λ) is the

fundamental solution matrix of the spatial part of the sine-Gordon Lax pair (1), the su(2) matrix

γ(s, t) = iΨ−1 dΨ
dλ

∣∣∣∣
λ=−iτ

(2)
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can be identified with a space curve of constant torsion τ and curvature κ = us, if we fix an isometry from

su(2) to R
3. Furthermore, the Bäcklund tranformation for a pseudospherical surface can be restricted to

one of its asymptotic lines to obtain a Bäcklund transformation on the space of constant torsion curves [3].

In [3] we study the geometrical and topological properties of a family of closed constant torsion curves,

associated to travelling wave solutions of the sine-Gordon equation, and their Bäcklund transformations.

These curves, which arise as the centerlines of elastic rods [7], realize a well-known class of knot types: for

every pair of relatively prime integers (m,n) with 1 < |m| < n/2, there is a unique (m,n) torus knot among

these curves. The evolution of such curves by sine-Gordon depends on two distinct phases, one of which

corresponds to a shift of curvature along the curve, and the other to a rigid motion in space. Bäcklund

transformations of two kinds are defined in [3], referred to as single and double. The former is shown to

reflect (via linking numbers) the topology of these curves, while the latter is used to produce constant torsion

realizations of a large number of additional knot types.

The present letter contains several results that generalize and complement those in [3]. In §2 the linking
number of a general closed constant torsion curve and its single Bäcklund transformation is computed in

terms of the geometry of the former. (This result generalizes an earlier formula obtained only for 2-phase

solutions.)

In §3 we remark that an infinitesimal Bäcklund transform of a 2-phase curve is the restriction of a slide-

Killing field along the curve. Iterations of Bäcklund transformations built from solutions of (1) at real

points of the Floquet spectrum generate the whole isospectral set of a given N-phase solution [6]; thus,

infinitesimal transformations generate the tangent space, including the symmetry vector fields, of the level

set. We conjecture that, in the curve context, the corresponding vector fields are restrictions of slide-Killing

fields along any given N-phase solution.

In §4 we discuss the structure of Bäcklund transformations iterated at a pair of complex conjugate double
points of the Floquet spectrum. We provide a formula for the number of complex double points of the

Floquet discriminant associated to a closed 2-phase curve, and exhibit the associated Floquet spectrum.

Complex double points are generically associated to linear instabilities [5]; in this case the Bäcklund formula

will give an explicit representation of the manifold of homoclinic orbits [6].

In the final section the time evolution is explicitly constructed for the 2-phase curves and their homoclinic

orbits. The time-dependence for solutions to sine-Gordon and to (1) is deduced by formulating the time

vector field in terms of the Killing fields along the “seed” curve. Besides showing typical pseudospherical

surfaces generated by the time evolution of homoclinic orbits of constant torsion 2-phase curves, we show

that the evolving curve may undergo several topological changes, i.e., the knot type is not preserved by the

integrable dynamics. This is in contrast to the behaviour of Bäcklund transformations of one-phase solutions
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(translating circles) of a related flow, the Localized Induction Equation; in [2], examples are computed of

closed curves which are asymptotic to the circle, but feature self-intersections that are preserved by the flow.

2. Linking and the single Bäcklund transformation

The single Bäcklund transformation for constant torsion curves can be formulated in terms of a gauge

transformation of the fundamental matrix solution Ψ(s;λ) of the spatial part of the sine-Gordon linear

system (1),

dψ

ds
=
1
2

(
λ κ
−κ −λ

)
ψ. (3)

Here, us is set equal to the Frenet curvature κ of the curve γ, as is the case for asymptotic lines on a

pseudospherical surface. Given a vector solution ψ(s) of (3) at λ = ν ∈ R, one lets

Ψ(1) = G(s;λ, ν)Ψ, (4)

where

G =
1√

λ2 − ν2

(
λI + ν

(
cosβ sinβ
sinβ − cosβ

))
, (5)

with β = −2 arctan(ψ1/ψ2). Then the new curve γν is obtained by replacing Ψ by Ψ(1) in formula (2); Ψ(1)

now solves system (3) when κ is replaced by the curvature of γν . If (T,N,B) is the Frenet frame of γ, then

γν = γ +
2ν

ν2 + τ2
(T cosβ +N sinβ). (6)

Note that β satisfies the differential equation

dβ/ds = ν sinβ − κ. (7)

In this section we want to derive a formula for the linking number of a closed constant torsion curve γ and

its closed Bäcklund transform γν ; this will be computed in terms of the curvature and self-linking number

of γ. Our main tool will be White’s formula [9, 11].

Assume that γ is closed of length L, and has a closed Bäcklund transformation γν for all ν sufficiently

close to zero,1 defined by an angle β(s; ν) depending analytically on ν. Let γν have the orientation it inherits

from γ under (6).

Let V = T cosβ +N sinβ. The ribbon between γ and γ + δV will be embedded for δ sufficiently small,

except at points where V is tangent to γ. For simplicity, assume this does not happen where κ = 0; we’ll

also assume τ > 0. Consider the perturbed vector

Ṽ = V − ε(cosβ)κB, ε > 0

As noted in [3], γ + δṼ is an embedded ribbon for ε sufficiently small.

1This is satisfied if the eigenvalues of the fundamental matrix of (3) at λ = 0, s = L are real and distinct.
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Let U be the unit vector in the direction of the projection of Ṽ onto the plane normal to T . Then White’s

formula gives

Lk(γ, γν) = Wr(γ) +
1
2π

∫
(T × U) · dU,

where the writhe Wr is related to the self-linking number by Pohl’s formula [8]

SL(γ) = Wr(γ) +
1
2π

∫
τds. (8)

Ordinarily, SL(γ) is defined as the linking number of γ and γ + δN . If γ is an odd curve, where κ and the

Frenet frame vectors N and B have antiperiod L, then we take (8) as the definition of SL(γ). Then, SL(γ)

is either an integer or a half-integer.

Further calculation gives

Lk(γ, γν) = SL(γ) +
1
2π

∫
d

(
arctan

(
tanβ

εκ

))
The last term contributes +1/2 (resp. −1/2) for every interval on which tanβ/κ passes from −∞ to +∞
(resp. +∞ to −∞). However, (7) shows that whenever sinβ changes sign, tanβ/κ goes from positive to

negative. Let j be the number of times sinβ changes sign; then

Lk(γ, γν) = SL(γ)− j/2.

Since this is an equation of integers (or half-integers), our extra assumption about the transversality of V at

inflection points can be removed by adjusting ν. Furthermore, since torsion, linking and self-linking numbers

change sign under reflections, our final formula is

Lk(γ, γν) = SL(γ)− j/2 sgn(τ). (9)

The integer j can be calculated from the curvature function κ alone. Suppose the angle β giving a closed

curve has a series expansion

β(s; ν) = β0(s) + β1(s)ν +O(ν2).

Substitution in (7) gives

β′
0 = −κ, β′

1 = sinβ0.

Since
∫ L

0
β′ds =

∫ L

0
β′

0ds by continuity,
∫ L

0
β′

1ds = 0. Hence β0 is an antiderivative of −κ(s) such that∫ L

0
sin(β0)ds = 0, and j is the number times sin(β0) changes sign.

Of course, this can also be calculated using an antiderivative θ of +κ(s). Then the vector (cos θ, sin θ)

is the unit tangent for a planar curve with curvature κ, rotated so that it starts and ends on the x-axis,

and j is the number of points along this curve where the tangent is parallel to the straight line between

the endpoints at s = 0 and s = L. (If κ has antiperiod L, j is calculated by taking s = 0 and s = 2L as

endpoints and dividing this count by 2.) Of course, rotation is not necessary to calculate j.
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The linking number formula (9) is illustrated in Figures 1 and 2.

Figure 1. At left is the ribbon formed by the normal vector of the knotted (2,5) elastic rod
of positive constant torsion, oriented clockwise. (Since the curvature is only periodic up to a
minus sign, the ribbon does not close up.) Self-linking, calculated by counting the crossings
of the outer edge of the ribbon with the centerline, is 15/2. In the middle is a planar curve
with the same curvature function (and twice the length) as the rod. Counting points where
the tangent line is parallel to the line segment between the ends gives j = 10/2 = 5. At right
is the rod (darker ribbon) and one of its nearby closed Bäcklund transformations, showing
that the linking number of the two is 5, in agreement with our formula.

Figure 2. At left is the normal ribbon for a double Bäcklund transformation of the unknot-
ted (1,3) elastic rod of positive torsion, showing self-linking is 4. The middle figure shows
j = 6. At right is the curve and one of its nearby closed single Bäcklund transformations;
the linking number is 1, agreeing with our formula.

3. A Remark on Killing Fields

Iterations of Bäcklund trasnformations at real points of the spectrum of a given N-phase solution are

known to generate its entire isospectral set [6], thus leaving the vectors of frequencies and wave numbers

of the solution of sine-Gordon unchanged. At the curve level we conjecture that Bäcklund transformations
5



at these real points are associated to the presence of Killing fields (i.e., restrictions of vector fields which

generate a one-parameter group of rigid motions in the ambient space) along the curve. More precisely,

iterated infinitesimal Bäcklund trasformations exhaust the generators of the slide-Killing fields along the

given curve.

We prove this for an elastic rod of constant torsion. In the case of elastic rods, Langer and Singer [7]

showed that the only Killing fields are linear combinations of the screw field V1 = 4τT + 2κB and the

translation field V2 = (κ2−c)T +2κsN−2κτB, where c is a real constant. As the spectral parameter ν → 0,

we compute

γν − γ =
2ν
τ2

(T cosβ +N sinβ) +O(ν2),

where the variable β satisfies dβ/ds = −κ+O(ν). We show that X = T cosβ +N sinβ is slide-Killing, i.e.

it differs from a Killing field by a constant multiple of the tangent vector.

A vector field Y is Killing if the Y -derivatives of the curve speed, curvature and torsion vanish. In [7] the

following expressions for the variations of the speed v, curvature κ and torsion τ are given:

Y (v) = vT · Ys, Y (κ) = N · Yss − 2κτYs, Y (τ) = [(B/κ) · Yss]s + (κB − τT ) · Ys.

For the vector field Y = µT +X, where µ is a constant to be determined, we find Y (v) = Y (τ) = O(ν) and

Y (κ) = µκs − τ2 sinβ +O(ν). We only need to show that these vanish up to O(ν).

For a closed elastic rod of constant torsion, the expression of the curvature function is κ(s) = κ0 cn(as, p),

where a = κ0/(2p) and p is the elliptic modulus. Choosing the constant of integration to be zero (one of the

two possible choices that guarantee that X is well-defined) we compute
∫ s

κds′ = 2arcsin(p sn(as, p)), and

sin(
∫ s

κds′) = 2p sn(as, p) dn(as, p) = −κs/a
2. (In the remainder of the paper, notation for elliptic functions

and integrals is taken from [1].) It follows that

Y (κ) = κs

(
µ+

τ2

a2

)

which vanishes if one selects µ = −4τ2/a2. This shows that Y = −4(τp/κ0)2 T +X is a Killing field, and

the infinitesimal Bäcklund transformation is a slide-Killing vector field.

4. Double Bäcklund transformations and elastic rods

The double Bäcklund transformation is obtained by first performing a gauge transformation (4), but

calculated using a solution of (3) for λ = ν a complex number instead, and then following this by a gauge

transformation using a related solution of (3) for λ = ν̄. Specifically,

Ψ(2) = G̃GΨ, (10)
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where G is as in (5), and

G̃ =
1√

λ2 − ν̄2

(
λI + ν̄

(
cos β̃ sin β̃

sin β̃ − cos β̃

))
,

with

β̃ = i log
(
ζ
ν|ζ|2 − ν̄

ν̄|ζ|2 − ν

)
, ζ = −e−iβ .

The new curve is then obtained from Ψ(2) as in (2).

The double Bäcklund transformation of a closed constant torsion curve of length L can be made to be

closed of length kL (k a positive integer) if the solution ψ of (3) is chosen to be kL-periodic, up to scalar

multiple. For generic values of ν, there exist only two such solutions, up to multiple, and for these the new

curve is congruent to the old one [3, 6]. However, any ψ may be used when ν is chosen to be a double root

of the discriminant

∆k(λ) = (trΨ(kL;λ))2 − 4. (11)

In this section, we give an explicit count of these double points when γ is a closed elastic rod centerline, and

curvature is a multiple of an elliptic cosine function of modulus p. We exclude those ν-values which are pure

imaginary, for which (10) is trivial.

Setting κ = κ0 cn(x), where x = as and a = κ0/(2p), we obtain a scale-invariant form of (3),

dψ

dx
=
1
2

(
q 2p cnx

−2p cnx −q

)
ψ, q = λ/a. (12)

Suppose that L = 2nK/a for some positive integer n. Then ∆k(λ) = −4 sin2(knKΛ), where

Λ = −iZ(arcsinα) + iαpq, α =

√
p−2(1 + q2)2 − 4q2

1− q2
(13)

and Z denotes the Jacobi zeta function (cf. [3], §2.4). Since the symmetries of the linear system imply that

−q and q̄ give the same curves as q, we will only count double roots in one quadrant of the complex plane.

Proposition 4.1. For a closed constant torsion elastic rod centerline, composed of n congruent segments

forming an (m,n) torus knot, the discriminant (11) has |m|k−1 double roots in the interior of each quadrant.

Proof. The formula for Λ is simplified when we let

q =
sn v

1 + cn v
, (14)

where we will confine v to the domain [−K,K)× [−2iK ′, 2iK ′) in the complex plane, on which q is a one-

to-one function of v. The branches of the square root in (13) meet at v = ±K ± iK ′. Since the discriminant

formula was obtained in [3] by analytic continuation from iλ = τ ∈ R, we choose the branch that is positive
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when q and v are pure imaginary, giving α = dn v/(p cn v) = sn(v + K + iK ′). Furthermore, in order for

Λ(p, q) to be positive and continuous at q = 0, we must use arcsinα = π − am(v +K + iK ′), giving

Λ = i

[
Z(v +K + iK ′) +

dn v(1− cn v)
cn v sn v

]
= iZ(w) + p cnw, w = v + iK ′

This shows Λ to be a holomorphic function of v.

On the domain we have chosen for v, Λ is real along the imaginary axis and along arcs bifurcating out

from that axis at points where cn v = E/(K − E). The only critical points of Λ, as a function of v, are at

these bifurcation points, and so Λ is monotone along the arcs. At the bifurcation point along the negative

imaginary axis, iλ = iaq is the torsion of the closed elastic rod, and 2KΛ equals the change in cylindrical

coordinate θ over one segment of the rod (see [3], eq. (9)), so that knKΛ = kmπ. Since Λ approaches zero

at the branch points v = ±K − iK ′, we see that 0 < knKΛ < kmπ along these arcs.
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Figure 3. The spectrum of the linear system (12) for a (2,5)-torus knot. Only the upper
half of the complex q-plane is shown, since the spectrum has symmetry q → q̄. The shaded
curves represent the continuous spectrum, consisting of the imaginary axis and a single
complex band ending at the points p ± ip′. The dots locate the complex double points
(non-degenerate zeros of the discriminant). In this case p = .73983, k = 2, giving 3 complex
double points along the complex band of spectrum in each of the quadrants, in agreement
with Proposition 4.1, together with an infinite number of imaginary double points.
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Figure 4. Pseudospherical surfaces generated by the elastic rod centerlines at top.

5. Bäcklund transformations and sine-Gordon evolution

The curvature κ = κ0 cn(as, p), a = k0/(2p), of a constant torsion elastic rod centerline gives initial data

u(s, 0) for the following solution of the sine-Gordon equation:

u(s, t) = 2 arcsin(p snx), x = as− t/a, (15)

the connection being that us = κ at time zero. We will explain how (15) is associated to a pseudospherical

surface, using special properties of this solution, and then explain the general construction.

We can think of the surface as representing an evolution of the s-coordinate curves over time t. If T,N,B

are Frenet frame vectors for one such curve, then the unit vector T cosu−N sinu points in the direction of
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increasing time. For the one-phase solution represented by (15), ∂t + a−2∂s doesn’t change the curvature or

the torsion of the s-curves, and so must represent the restriction to the curve of a Killing field. In fact, in

terms of the vector fields defined in §3,

∂t =
1

a2τ2

(
V2 + τV1 − τ2T

)
.

Thus, up to a tangential component, these elastic rod centerlines move by a screw motion, generated by

V2 + τV1, as we move across the pseudospherical surface. Some of these surfaces are shown in Figure 4.

One can more directly associate a surface (or, an evolving curve) to a solution of sine-Gordon using a

matrix-valued solution Ψ(s, t;λ) to (1) which depends smoothly on λ. As in (2), we let

γ(s, t) = iΨ−1 dΨ
dλ

∣∣∣∣
λ=−iτ

.

Then γ(s, t) sweeps out a pseudospherical surface, along which the s-curves have torsion τ and the t-curves

have torsion −τ . Of course, to carry out this construction one needs to know the matrix Ψ as a function of

λ.

For (15), Ψ can be expressed in terms of theta functions (see [1]), as follows. As in (14), let v ∈ C be such

that λ/a = sn v/(1 + cn v), and let

c =
π

2

( v

2K
− 1

)
.

Then our matrix solution is

Ψ(s, t; v) =




θ0(z + c)
θ1(c)θ0(z)

θ2(z − c)
θ3(c)θ0(z)

θ2(z + c)
θ3(c)θ0(z)

θ0(z − c)
θ1(c)θ0(z)




(
ebz+δt 0
0 e−bz−δt

)
(16)

where

z =
πx

2K
=

π

2K
(as− t/a), b =

2K
π

λ

a
− θ′3(c)

θ3(c)
, δ =

dn v

2a sn v
.

As mentioned in the introduction, our Ψ depends on two linearly independent phases, z and bz+δt, and thus

we call the evolving curves two-phase . Notice, however that the second phase only enters in the different

scale factors of the first and second columns of Ψ.

When ν is chosen to be a double root of the discriminant, any complex (nonzero) linear combination

ψ = Ψ( c1
c2 )

of the columns of Ψ leads to a closed curve; since scaling ψ does not affect the transformation, there is a

Riemann sphere’s worth of such transformations, parametrized by ω = c2/c1. It is known (cf. [3], Figure

2.4) that the knot type of the transformed curve may change as ω varies.

The specific form of (16) leads to two conclusions about the time evolution of double Bäcklund transfor-

mations of constant torsion elastic rod centerlines.
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1. The two columns of (16) are each solutions of period L (up to scalar multiple), and lead to curves

congruent to the original rod. Therefore, as t → ±∞, any other solution ψ is asymptotically a multiple

of one of the columns of (16), and the curve is asymptotic to a (possibly k-times-covered) copy of the

original rod.

2. Let ψ(s, t;ω) denote a linear combination of columns of Ψ using c2/c1 = ω. Then

ψ(s, t;ω) = ψ(s, 0; e2δtω),

up to scalar multiple and a translation in s. Therefore, evolution in time gives the same curves as

modifying ω at time zero, which will in general change the knot type.

In Figure 5, we show the time evolution of a closed double Bäcklund transformation of the (2,5) rod. The

corresponding pseudospherical surface is shown in Figure 6. Notice that the knot type changes with time.
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10. J. Pöschel, E. Trubowitz, Inverse Spectral Theory, Academic Press, 1987.
11. J. White, Self-linking and the Gauss integral in higher dimensions, Am. J. Math 91 (1969), 693-728.

11



Figure 5. Time evolution of a
double Bäcklund transformation,
seen from above, displayed with-
out the rotation of the original
elastic rod (on the right in fig-
ure 4). Frames are shown for
t = 0, .6, 1.8, 2.2 on left, t =
3.4, 4.8, 5.6, 6.4 on right. Knot
type changes from unknotted to
trefoil to (2,5) torus knot.
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Figure 6. Pseudospherical surface swept out by curves in the previous figure.
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